Innovative biochemistry solutions from Interchim

Derivatization reagents

<table>
<thead>
<tr>
<th>Acylation Reagents</th>
<th>Silylation Reagents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acylating amines, hydroxyl, thiol groups, carbohydrates. MBTFA, TFAA, HFBI…</td>
<td>For excellent chromatographic separations. BSA, BSTFA, HMDS, MAX, MSTFA, MTBSTFA</td>
</tr>
<tr>
<td>Alkylation Reagents</td>
<td>Silylation Grade Solvents</td>
</tr>
<tr>
<td>Substitution of active hydrogens with aliphatic or aliphatic-aromatic groups. BF3, TMPAH, DMFDMA, PFBBr</td>
<td>Manufactured to meet your exacting silylation needs.</td>
</tr>
</tbody>
</table>

Acylation Reagents

Acylation

Provides derivatives that are better suited to chromatography and give a better response than the parent compound. Delivers enhanced detectability by electron capture detector (ECD).

MBTFA

MBTFA is for trifluoroacylating primary and secondary amines, hydroxyl and thiol groups and carbohydrates.

- TS-49700 10 x 1mL ampules
- TS-49703 25mL
- TS-49704 100mL
- TS-49701 5g

- Reacts under nonacidic conditions
- Principle byproduct from the derivatization reaction is N-methyltrifluoroacetamine, which is stable, volatile and does not present problems in subsequent GC
- Produces very volatile derivatives of carbohydrates
- Can be used to selectively acylate amines in the presence of hydroxyl and carboxyl groups that have been protected by silylation

Pentafluoropropanol

an acylation reagent purified for GC/MS applications.

- TS68195, 10x1ml amps

- Addition of fluorine atoms into compounds greatly enhances the sensitivity of certain detectors for all those materials
- Carboxylic acids can be derivatized using a two-step reaction involving reaction with anhydride, followed by a fluorinated alcohol

Perfluoro Acid Anhydrides (TFAA, PFAA and HFAA)

highly purified for optimal preparation of fluoracyl derivatives.

- TS-67363 Trifluoroacetic Acid Anhydride; 100g
- TS-65193 Pentafluoropropionic Acid Anhydride; 10 x 1mL ampules
- TS-65192 Pentafluoropropionic Acid Anhydride; 25g
- TS-65191 Pentafluoropropionic Acid Anhydride; 100g
- TS-63164 Heptafluorobutyric Acid Anhydride; 10 x 1mL ampules

- Used to prepare fluoracyl derivatives for GC/MS
- Produce stable volatile derivatives for FID and ECD techniques
Perfluoroacylimidazoles HFBI and TFAI offer effective acylation of hydroxyl groups and primary and secondary amines.

- TS-44211 HFBI; 5g
- TS-48882 TFAI; 10 x 1mL ampules

- Reactions are smooth, quantitative and produce no acid byproducts
- Principal by-product, imidazole, is relatively inert
- Excellent for FID and ECD techniques
- Derivatives are volatile, despite size of group
- Closely bound fluorines contribute to stability

Recommended for:

- Use in bifunctional derivatization schemes and in exchange reactions where TMS derivatives are converted to HFB derivatives
- Hydroxyl groups of catecholamines are derivatized with TMSI, followed by conversion of the amines to acylamides with HFBI
- Tryptamine and metabolites present in spinal fluid have been analyzed by ECD using HFBI

Alkylation Reagents

BF3-Methanol

- Provides convenient, fast and quantitative esterification of fatty acids.
- TS-49370 100mL
 - Supplied in septum-sealed Hypo-Vial Sample Storage Vial for convenient syringe removal
 - Consists of 14% BF3, MW 67.82, and 86% CH3OH, MW 32.04

MethElute® Reagent (TMPAH)

- Provides accurate, sensitive on-column methylation.
- TS-49300 10mL
- TS-49301 12 x 1mL
 - 0.2M trimethylanilinium hydroxide (TMPAH) in methanol solution
 - For quantitative methylation and detection of barbituates, sedatives, xanthine bases, phenolic alkaloids and phenylthion by gas chromatography
 - Single quantitative peak for each substance
 - When reagent is heated with drug-containing extracts, serum or urine, those drugs containing reactive amino, hydroxyl and carboxyl functions will be methylated at the reactive sites
 - Comparable to or better than UV/TLC method (when phenobarbitol and phenytoin are present, GC is superior to UV/TLC)
 - Coefficient of variation is 5% or less
 - Detects barbiturates to 0.2mg/dL

Methylate Reagent (DMFDMA)

- Offers easy, effective preparation of methyl esters from fatty acids and amino acids.
- TS-49350 For 0.53mm I.D. Columns; 0.8mm Ferrule I.D.

- Advantages for preparation of methyl esters for gas chromatography:
 - Speed: the reaction is complete upon dissolution (except long chain solid acids)
 - No water washing, extraction or concentration of derivatives required
 - No water formed
 - Quantitation: quantitative yields are obtained when the reagent and sample are injected without prior mixing
 - Convenient: ready-to-use reagent contains 2mEq/mL pyridine
 - Stored in hypovials, stable at RT

Pentafluorobenzyl Bromide (PFBBr)

- For electron capture GC analysis of carboxyl acids, phenols and sulfonamides. Analysis of trace organics in asphalt.
- TS-58220 5g
 - Fast reaction times for extraction alkylation technique: ~20 minutes
 - Derivatives are highly EC-sensitive, making them useful in low-level determinations of fatty acids
 - Analysis of trace organics in asphalt

Silylation Reagents

Trimehtilsilyl and t-butyldimethyl derivatives offering excellent thermal stability. They improve chromatography separations.

BSA

- The perfect reagent for volatile TMS derivatives.
- TS-38836 10 x 1mL
- TS-38839 100g
- TS-38838 25g
 - Highly reactive trimethylsilyl donor that reacts quantitatively to form volatile, stable TMS derivatives
 - Reacts quickly and quantitatively under mild conditions with a variety of compounds
 - Derivatizes alcohols, amines, amides, carboxylic acids, phenols, sterols, biogenic amines and alkaloids
BSTFA

provides excellent chromatographic separations.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS-38830</td>
<td>BSTFA 10 x 1mL ampules</td>
<td>10 x 1mL</td>
</tr>
<tr>
<td>TS-38828</td>
<td>BSTFA 25g</td>
<td>25g</td>
</tr>
<tr>
<td>TS-38829</td>
<td>BSTFA 100g</td>
<td>100g</td>
</tr>
</tbody>
</table>

BSTFA is a powerful thimethylsilyl donor, with donor strength that is comparable to its unfluorinated analog BSA [N,O-Bis(trimethylsilyl)acetamide]. BSTFA reacts to replace labile hydrogens on a wide range of polar compounds with a Si(CH3)3 group. This physical characteristic is particularly useful in the gas chromatography of some lower boiling TMS-amino acids and TMS Krebs cycle acids.

- Increased volatility of reaction byproducts mono(trimethylsilyl)trifluoroacetamide and trifluoroaceticamid over corresponding nonfluorinated compounds from BSA
- Increased volatility makes it possible to derivatize smaller molecules with which the TMS derivatives elute with the byproducts from BSA

BSTFA + TMCS

well-suited for difficult-to-silylate compounds.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS-38831</td>
<td>BSTFA +1% TMCS 10 x 1mL ampules</td>
<td>10 x 1mL</td>
</tr>
<tr>
<td>TS-38832</td>
<td>BSTFA +1% TMCS 10g</td>
<td>10g</td>
</tr>
<tr>
<td>TS-38833</td>
<td>BSTFA +1% TMCS 25g</td>
<td>25g</td>
</tr>
<tr>
<td>TS-38834</td>
<td>BSTFA +1% TMCS 100g</td>
<td>100g</td>
</tr>
<tr>
<td>TS-38840</td>
<td>BSTFA +10% TMCS 10 x 1mL ampules</td>
<td>10 x 1mL</td>
</tr>
</tbody>
</table>

- Excellent for derivatizing fatty acid amides, slightly hindered hydroxyls and other compounds
- Catalyzed formulation is stronger than BSTFA alone

HMDS (Hexamethyldisilazane)

greatly extends the practical range of GC, improving chromatographic results in the silylation of sugars and related substances.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS-84770</td>
<td>HMDS 25g</td>
<td>25g</td>
</tr>
<tr>
<td>TS-84769</td>
<td>HMDS 100g</td>
<td>100g</td>
</tr>
</tbody>
</table>

- Suitable for deactivating and coating chromatographic supports
- Monofunctional, making polymerization not possible and eliminating surface moisture

Methoxamine (MOX) Reagent

useful for preparing oximes of steroids and ketoacids prior to silylation.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS-45950</td>
<td>Hypo-Vial Container; 10mL</td>
<td>10mL</td>
</tr>
</tbody>
</table>

- 2% methoxamine-HCl (M.W. 83.51) in pyridine
- Prevents formation of multiple derivatives when enols are present during silylation
- Supplied in amber Hypo-Vial Sample Storage Vial with septum and crimp top

MSTFA and MSTFA 1% TMCS

offer maximum volatility.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>48910</td>
<td>MSTFA 10 x 1mL ampules</td>
<td>10 x 1mL</td>
</tr>
<tr>
<td>48911</td>
<td>MSTFA 10g</td>
<td>10g</td>
</tr>
<tr>
<td>48913</td>
<td>MSTFA 25mL</td>
<td>25mL</td>
</tr>
<tr>
<td>48914</td>
<td>MSTFA 100mL</td>
<td>100mL</td>
</tr>
<tr>
<td>48915</td>
<td>MSTFA +1% TMCS 10 x 1mL ampules</td>
<td>10 x 1mL</td>
</tr>
</tbody>
</table>

- Trimethylsilyl donor strength comparable to BSA and BSTFA
- Reacts to replace labile hydrogens on a wide range of polar compounds with a Si(CH3)3 group
- Used to prepare volatile and thermally stable derivatives for GC and MS
- Volatile byproduct N-methyltrifluoroacetamide, has an even lower retention time than MSTFA
- Often TMS derivatives of small molecules can be analyzed when derivatized with MSTFA because the byproducts and the reagent itself usually elute with the solvent front
- Addition of TMCS aids derivatization of amides, secondary amines and hindered hydroxyls not derivatized by MSTFA alone

MTBSTFA and MTBSTFA+1% TBDMS

stable TBDMS (tert-butyldimethylsilyl) derivatization of hydroxyl, carboxyl, thiol and primary and secondary amines.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS-48920</td>
<td>MTBSTFA 5mL ampules</td>
<td>5mL</td>
</tr>
<tr>
<td>TS-48927</td>
<td>MTBSTFA +1% TBDMS 10 x 1mL ampules</td>
<td>10 x 1mL</td>
</tr>
</tbody>
</table>

- Derivatizes hydroxyl, carboxyl, thiol and primary and secondary amines
- Typical yields are >96%
- Provides TBDMS ethers that are 104 times more stable to hydrolysis than TMS ethers
- Reaction byproducts are neutral and volatile
- Derivatives have a high molecular concentration at M-57
- Silylating potential increased by adding 1% TBDMS
TMCS (Trimethylchlorosilane)
an excellent catalyst for difficult-to-silylate compounds.

TS-88530 25g

- Excellent adjunct for forming trimethylsilyl ethers for GC determinations
- Used to prepare TMS derivatives of organic acids

TMSI (N-Trimethylsilylimidazole)
the strongest silylator available for carbohydrates and steroids.

TS-88623 TMSI (trimethylsilylimidazole); 10 x 1mL ampules
TS-88626 TMSI (trimethylsilylimidazole); 25g
TS-88626 TMSI (trimethylsilylimidazole); 100g

- Reacts quickly and smoothly with hydroxyls and carboxylic acids but not with amines
- Especially useful in multiderivatization schemes for compounds containing both hydroxyl and amine groups
- Used in the derivatization of alcohols, phenols, organic acids, steroids, hormones, glycols, nucleotides and narcotics
- Excellent for C1 through C5 fatty acids in serum and urine

Tri-Sil BP (BSA:pyridine) Reagent
derivatizes alcohols, phenols, organic acids, aromatic amides and amines.

TS-49012 25mL

Excellent for unhindered steroids, but not recommended for carbohydrates. Reacts with:

- Alcohols, phenols, some enols and other hydroxyl and polyhydroxyl compounds to form trimethylsilyl esters
- Organic acids to form trimethylsilyl esters
- Aromatic amides to form N-trimethylsilyl derivatives
- Amino acids to form both N- and O-trimethylsilyl derivatives
- Amines to form N-trimethylsilyl derivatives

Silylation Grade Solvents

TS-20062 Acetonitrile, 50mL
TS-20672 Dimethylformamide (DMF); 50mL
TS-20684 Dimethylsulfoxide (DMSO); 50mL
TS-27530 Pyridine; 50mL
TS-27860 Tetrahydrofuran (THF); 50mL

- Purified, dried and packaged under nitrogen in convenient 50mL Hypo-Vial Sample Storage Vials
- Supplied with elastomer septa, allowing immediate access to the sample without exposure to moisture and oxygen
- Use polar solvents (acetonitrile, dimethylformamide, dimethylsulfoxide, pyridine, tetrahydrofuran) to facilitate reactions; nonpolar organic solvents may be used, but they will not accelerate the rate of reaction

Recommended to:

∞ Avoid water or alcohol because TMS reagents react with active hydrogen; avoid enolizable ketones
∞ Use dimethylformamide for steroids and other large molecules
∞ Use dimethylsulfoxide to prepare TMS derivatives of tertiary alcohols and some compounds with reluctant solubility in other silylation solvents
∞ Pyridine is an excellent solvent and reaction medium for MS reactions and is an HCl acceptor in reactions involving organochlorosilanes
∞ Other commonly used solvents include tetrahydrofuran and acetonitrile

Multi Maleimide agents

Sulfhydryl reactive tris- and tetra maleimide reagents for preparing multimeric aggregates of polypeptides

TMAE (Mal-3)
tris-(2-Maleimidoethyl)amine; MW: 386.36; spacer: 10.3 Å

See other multifunctional crosslinkers in the technical sheet

Related products lines

Interbiotec - BioSciences innovation – proposes a complete range of products for protein biochemistry.

- Surface Treatment / Silanlyisation
- Innovative and remarkable chemistries, conjugation methods, labeling and functionalisation
- Standard Click Chemistry reagents
- Copper-free Click Chemistry reagents (DBCO reagents)
- Staudinger reaction (effective conjugations/chemical modification)
- PEGylation reagents (conjugation reagents, linkers and building blocks)
- SAM reagents (Self-Assembled Monolayers for surface modification)
- SDA reagents (effective photo reactions)
- STELLA labeling (azocycloaddition reactions)
- Gold nano-particules and materials
- Carbone nanotubes
- ITO slides

- FluoProbes labeling agents
- Desalting tools – CelluSep tubings, SpectraPor tubings, GebaFlex, FloatALyser, SlideALyser,...
Information inquire

Reply by Fax: +33 (0) 4 70 03 82 60 or email at interbiotech@interchim.com

☐ I wish to receive the complete documentation about: __

..

Name: ___________________________ 2nd name: ___________________________ Position: ___________________________

Company/Institute: ___________________________ Service, Lab: ___________________________

Address: __

Zip code: ___________ Town: ___________________________

Tel: _______________________ Fax: ___________________ Email: __________________________________

Name: ___________________________ 2nd name: ___________________________ Position: ___________________________

Company/Institute: ___________________________ Service, Lab: ___________________________

Address: __

Zip code: ___________ Town: ___________________________

Tel: _______________________ Fax: ___________________ Email: __________________________________