Labeled Dextran Conjugates

Product Information

Dextrans are naturally synthesized polysaccharides with good water solubility, low toxicity and varied molecular weights. They have been successfully used as long-term tracers for live cells.

Our dextrans were purified by size chromatography to remove non-conjugated molecules and ensure adequate cell biology assays applications. Dextrans were functionalized with a variety of groups, dyes and other biomolecules.

<table>
<thead>
<tr>
<th>Product name</th>
<th>cat. number</th>
<th>Anionic form</th>
<th>MW g.mol⁻¹</th>
<th>λ_exc/em. nm</th>
<th>Product name</th>
<th>cat. number</th>
<th>Anionic form</th>
<th>MW g.mol⁻¹</th>
<th>λ_exc/em. nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dextran–biotin</td>
<td></td>
<td></td>
<td>3 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 000</td>
<td></td>
</tr>
<tr>
<td>FP-BN454B, 10 mg</td>
<td></td>
<td></td>
<td>40 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70 000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dextran–amine</td>
<td></td>
<td></td>
<td>3 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 000</td>
<td></td>
</tr>
<tr>
<td>FP-57615A, 100mg</td>
<td></td>
<td></td>
<td>10 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70 000</td>
<td></td>
</tr>
<tr>
<td>FP-AQ9XI1, 100mg</td>
<td></td>
<td></td>
<td>40 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500 000</td>
<td></td>
</tr>
<tr>
<td>FP-AQ9XJ1, 100mg</td>
<td></td>
<td></td>
<td>70 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP-11739A, 100mg</td>
<td></td>
<td></td>
<td>10 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP-11740A, 100mg</td>
<td></td>
<td></td>
<td>500 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP-0B3261, 100 mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP-AQ9XL1, 100mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dextran-amine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dextran-Blue (Cibacron blue F3GA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP-J11090, 1 g</td>
<td></td>
<td></td>
<td>5 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 000</td>
<td></td>
</tr>
<tr>
<td>FP-J11100, 1 g</td>
<td></td>
<td></td>
<td>40 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70 000</td>
<td></td>
</tr>
<tr>
<td>FP-BSEM0, 1 g</td>
<td></td>
<td></td>
<td>110 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP-J11120, 10 g</td>
<td></td>
<td></td>
<td>500 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP-J11140, 10 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP-J11151, 1 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP-J11161, 1 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dextran–FITC</td>
<td></td>
<td></td>
<td>3 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 000</td>
<td></td>
</tr>
<tr>
<td>FP-67369A, 10 mg</td>
<td></td>
<td></td>
<td>10 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP-CL3200, 100 mg</td>
<td></td>
<td></td>
<td>20 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP-CL3210, 100 mg</td>
<td></td>
<td></td>
<td>40 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP-CL3220, 100 mg</td>
<td></td>
<td></td>
<td>70 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP-36223C, 100 mg</td>
<td></td>
<td></td>
<td>500 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP-90231B, 100 mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dextran-biotin, Lysine Fixable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP-66276B, 5 mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP-18938B, 10 mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP-B4CPX0, 10 mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dextran–FITC, Lysine Fixable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP-66264A, 10 mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP-86710A, 10 mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dextran-biotin, Lysine Fixable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP-66264A, 10 mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP-86710A, 10 mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

can be used to react with other chemical groups via standard chemistry (e.g. EDC-mediated reductive amidation with carboxyls)

Dextran-Blue (Cibacron blue F3GA)

FP-J11090, 1 g
FP-J11100, 1 g
FP-BSEM0, 1 g
FP-J11120, 10 g
FP-J11140, 10 g
FP-J11151, 1 g
FP-J11161, 1 g

FP-J11150, 10 g
FP-J11160, 10 g

621.5 / -

Dextran–FITC

FP-67369A, 10 mg
FP-CL3200, 100 mg
FP-CL3210, 100 mg
FP-CL3220, 100 mg
FP-36223C, 100 mg
FP-90231B, 100 mg
FP-CL3230, 100 mg

FP-87954A, 25 mg
FP-87954B, 25 mg
FP-90231A, 30 mg
FP-90231B, 30 mg
FP-WT8720, 10 mg

3 000
4 000
10 000
20 000
40 000
70 000
500 000

494/518

Dextran-FITC, Lysine Fixable

FP-66264A, 10 mg
FP-86710A, 10 mg

FP-56557A, 10 mg

500 000

P.1
Introduction

Labeled dextrans are used typically as long-term tracers for live cells studies. The lysinated dextrans are useful for applications that require the dextran tracer subsequently be treated with aldehyde fixatives for analysis.

Technical and scientific information

Dextrans features

Dextran\(^\text{a}\), are hydrophilic polysaccharides synthesized by Leuconostoc bacteria. They have high molecular weight, and after fractionation with a variety of sizes. Dextrans have good water solubility, low toxicity and relative inertness. Their \(\alpha-1,6\)-poly-glucose linkages are resistant to cleavage by most endogenous cellular glycosidases. These properties make Dextran serve as effective water-soluble carriers for dyes, indicators and reactive groups in a wide variety of applications, especially as long-term tracers for live cells.

Numerous dextran conjugates in a variety of molecular weights (3 000, 10 000, 40 000, 70 000, 500 000) and labeled with a wide array of substituents are available.

Unlabeled dextrans are polydisperse, and may become more upon chemical processes required for their modification and purification. The actual molecular weights present in a particular sample may have a broad distribution: for example, the 3 000 MW dextran preparations contain polymers with molecular weights predominantly in the range of ~1500-3 000 daltons, including the dye or other label, while the 70 000 MW dextran preparations contain polymers with molecular weights ranging from 60 000 to 90 000 daltons.

The degree of labeling of the dextran conjugate is one-half to one dye per dextran in the 3 000 MW range; one to two dyes per dextran in the 10 000 MW range; two to six dyes per dextran in the 40 000 MW range; three to eight dyes per dextran in the 70 000 MW range; and 13-130 dyes per dextran in the 500 000 and 2 000 000 MW.

<table>
<thead>
<tr>
<th>Product name</th>
<th>cat. number</th>
<th>Anionic form</th>
<th>MW</th>
<th>(\lambda_{\text{exc/em.}}) nm</th>
<th>Product name</th>
<th>cat. number</th>
<th>Anionic form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dextran–Rhodamine B</td>
<td>FP-BV1390, 10 mg</td>
<td></td>
<td>3 000</td>
<td>555/580</td>
<td>Dextran-TMR, Lysine Fixable</td>
<td>FP-14440A, 10 mg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FP-319441, 25 mg</td>
<td></td>
<td>10 000</td>
<td></td>
<td></td>
<td>FP-91830B, 30 mg (Fluoro-Ruby)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FP-04788A, 30 mg</td>
<td></td>
<td>40 000</td>
<td></td>
<td></td>
<td>FP-69803A, 10 mg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FP-4974A, 30 mg</td>
<td></td>
<td>70 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FP-BV2850, 10 mg</td>
<td></td>
<td>500 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dextran-TRITC</td>
<td>FP-CL3150, 100 mg</td>
<td></td>
<td>4 000</td>
<td>555/580</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dextran-CY\text{a}</td>
<td>FP-WT8780, 2 mg</td>
<td></td>
<td>3 000</td>
<td>580/675</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FP-WT8790, 5 mg</td>
<td></td>
<td>10 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FP-WT8800, 5 mg</td>
<td></td>
<td>40 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FP-WT8810, 5 mg</td>
<td></td>
<td>70 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FP-WT8820, 5 mg</td>
<td></td>
<td>500 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dextran-CY\text{a}</td>
<td>FP-DZ0571, 2 mg</td>
<td></td>
<td>3 000</td>
<td>663/690</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FP-DZ0581, 5 mg</td>
<td></td>
<td>10 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FP-DZ0591, 5 mg</td>
<td></td>
<td>40 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FP-DZ0601, 5 mg</td>
<td></td>
<td>70 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FP-DZ0611, 5 mg</td>
<td></td>
<td>500 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dextran-CY\text{a}</td>
<td>FP-DZ0641, 5 mg</td>
<td></td>
<td>8 000</td>
<td>743/767</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Storage: +4°C (K)

\(\text{a}\): FluoroProbes®
FT-18938B

ranges. The degree of labeling is optimized to provide the brightest conjugate, without producing quenching effects or undesired interactions with cellular components that can occur with excessive labeling. Our labeling and purification process provides improved selectivity, stability and low toxicity.

The net charge on the dextran depends both on the attached fluorophore charge and on the capping reagent used to cap unreacted amines. Hence, capping yields typically neutral dextrans, quite neutral dextrans (i.e. with rhodamine and SR101 fluorophores that are zwitterionic) or anionic dextrans (with anionic fluorophores).

The lysinated dextrans are useful for applications that require the dextran tracer subsequently be treated with aldehyde fixatives for analysis. I.e. Lysine-fixable biotin-dextran (MW 10,000) is taken up by neuronal processes and transported bi-directionally. It infiltrates axon buttons in the anterograde direction and dendritic processes in the retrograde direction. Staining can be observed in fixed and sectioned tissue from two days to two weeks after biotin-dextran is injected into the brain or spinal cord. It can also be applied to cut nerve tracts. Biotinylated neurons are detected by either light or electron microscopy following incubation with avidin-horseradish peroxidase conjugate and the electron-dense substrate 3,3′-diaminobenzidine (DAB).

General properties of Biotin label
Biotin is an indirect label popularized thanks to its versatility for detection, purification, and amplification systems. It bind with very high affinity ot avidin related molecules.

General properties of Fluorescein dyes
Fluorescein is surely the most popular fluorochrome since the first ages of fluorescence biotechnologies. It has excitation/emission maxima of λabs./λem. 494 /519 nm. Advantages include: * Relatively high absorption, * Excellent fluorescence quantum yield, * Excitation maxima ~494 nm closely matches the 488 nm spectral line of the argon-ion laser (confocal laser scanning microscopy, flow cytometry), * well characterized fluorophore with low cost and large referencement. Drawbacks include: * Poor sensitivity in some conditions or un-accurate detection while new alterantive are proposed for superior performances (i.e. our great FluoProbes®488 and 505 dyes).

General properties of Rhodamine dyes
Rhodamines based dyes have supplemented fluorescein-based dyes, as they offer longer wavelengths emission maxima, opening opportunities for multicolor labeling.

Tetramethylrhodamine (TMR) is the most popular rhodamine dye, and has excitation/emission maxima of ~555/580 nm. Its carboxilic acid form (TAMRA) remains prominent for oligonucleotide labeling (DNA sequencing), while its isothiocyanate derivative (TRITC) rose a larger popularity, having bright red-orange fluorescent with similar excitation/emission maxima to TMR. Now, the absorption and emission in pH 8 buffer are red-shifted approximately 8 nm compared to MeOH, with EC ~10% lower. λabs./λem.: 543/571nm. The absorption spectrum of TMR/TRITC-labeled proteins is frequently dependent on the labeling location and on the degree of substitution, and may even show splitting into two absorption peaks at about 520 and 550 nm. Such limitation can be adressed using alternative dyes, such as our excellent FluoProbes®547H that has brighter and more stable fluorescence.

General properties of CYanine dyes
CYanine-structure based dyes were introduced to cover more uniformaly the light spectrum, offering additionally some advantages over former fluorochromes. Although many structures modifications were proposed, most cyanine dyes self aggregate in aqueous solution or show cis-trans isomerization that decrease the fluorescence. CYamine-5.5 has maximum excitation/emission at 673/692nm with an extinction coefficient of 250 000M^-1cm^-1 CYamine-7 has maximum excitation/emission at 747/774 nm with an extinction coefficient of 250 000M^-1cm^-1

Applications
Size Exclusion & permeability
The defined molecular weights of dextran are useful to study exclusion properties:
vascular networks and cell membranes
- intracellular communication through gap junctions
- artificial polymer matrices

Dextran is a excellent technique for studying the microvascular permeability of healthy and diseased tissues. The technique is high sensitivity and concentrations down to 1 ng/ml can be detected in tissue fluids. The major application of TRITC-dextran is for characterising the permeability of semi-permeable membrane either synthetic or natural (organ tissues). This is enabled by using TRITC-dextran of various molecular weights. For example a TRITC-dextran 150 000 will be retained in the blood vessels since the fraction excreted by the kidneys is very low.

Cell Lineage

Excellent retention properties and low toxicity of dextran are taken to good account in:
- Tracing cell lineage (cancerogenesis, embryogenesis,...)

Caged fluorophore - dextran can be injected into cells at early development stages and then later activated.

Neuronal Tracing

Dextran conjugates with molecular weights up to 70 000 daltons are widely used to trace neuronal projections. The 3 000 MW dextran conjugates penetrate peripheral neuronal processes better and diffuse faster than higher-MW dextrans. Labeled dextran can function efficiently as anterograde or retrograde tracers, depending on the study method and tissue type used.

Endocytosis

Labeled dextran are useful to monitor the uptake and internal processing of exogenous materials to study:
- endocytosis,
- endosome fusion,
- cell membrane changes,
- vesicular morphology.

Fluid Dynamics

The diffusion of the dextran tracer can monitored using fluorescence recovery after photobleaching (FRAP) techniques, or by photoactivation of caged fluorophore-dextran conjugates, to study:
- macromolecular diffusion through cytoplasm,
- fluid flow velocity,
- liposome encapsulation
- vascular flow in whole animals.

Directions for use

Handling and Storage

Dextran conjugates are provided as lyophilized containing only trace amounts of salts. Purification of the conjugates is performed using a combination of precipitation, dialysis, gel filtration and other techniques. The conjugates are then assayed by thin-layer chromatography (TLC) to ensure absence of free dye.

Dextran conjugates are generally soluble in aqueous buffers to at least 10 mg/mL.

_Areas of use increase as the molecular weight increases; thus the maximum solubility in aqueous buffer is about 100 mg/mL for 3 000 MW dextrans, 50 mg/mL for 10 000 MW dextrans, 25 mg/mL for 70 000 MW dextrans and 5-10 mg/mL for the 500 000 dextrans. Dextrans with hydrophobic functional groups (e.g., rhodamine or biotin) may be more readily soluble in slightly alkaline (pH 8 or above) buffers. Vortexing, sonicating or briefly heating (40-50°C) may increase the solubility. Any insoluble particles formed during dissolution should be removed by centrifuging the mixture in a microfuge at 12 000 × g for 5 minutes. Alternatively, the particles may be removed by filtrating a dilute solution of the dextran through Whatman ® #2 filter paper.

Aqueous solutions of dextrans may be stored at 4°C for several weeks, with the addition of sodium azide to a final concentration of 2 mM to inhibit bacterial growth. Sterilization of fairly dilute dextran solutions (1-10 mg/mL) may be performed by filtration using 0.2 µm pore-diameter sterile filters. For long-term storage, divide the aqueous solution into aliquots and freeze at <=-20°C. AVOID REPEATED FREEZING.
Protocols

Protocols can be found in the literatures, differing greatly with each application, dextran net charge, degree of labeling and nature of the dye. Below are given 2 protocols examples.

General properties of FITC-dextran
FITC-dextran is supplied as a yellow powder which freely dissolves in water giving a yellow solution. The FITC-substituents are stable at normal pH (4-10) at room temperature. Autoclaving may lead to some slight release of free fluorescein amine. Sterilisation is preferentially performed by sterile filtration. FITC-dextran has been shown to be stable in vivo and has excellent biocompatibility. Studies by gel chromatography have shown that the FITC-substituents are essentially distributed evenly over the dextran molecule. Excitation is best performed at 490nm and fluorescence measured at 520nm. The intensity is however dependent on pH and measurements should be made under controlled conditions.

General properties of TRITC-dextran
TRITC-dextran is supplied as a red powder which dissolves in water giving a red solution. The higher molecular weight products appear to be somewhat slower to dissolve than the corresponding FITC-dextrans. Some heating may facilitate dissolution. The TRITC-substituents are stable at normal pH (4-10) at room temperature. Autoclaving may lead to some slight release of free aminorhodamine. Sterilisation is preferentially performed by sterile filtration. TRITC-dextran has been shown to be stable in vivo and has excellent biocompatibility. Excitation is best performed at 550nm and fluorescence measured at 585nm. The intensity is however dependent on pH and measurements should be made under controlled conditions.

Fluoro-Gold User Guide
A 10% solution of Fluoro-Ruby is made by dissolving 10mg of Fluoro-Ruby dry powder in 100µl of distilled water. It is then delivered via intracranial stereotaxic injection using a 1µl Hamilton microsyringe to pressure inject the tracer. Injection volumes typically range from 0,02-0,1 µl and are gradually injected over a 10-15 minute interval. The animal is allowed to recover and is sacrificed typically 4-14 days later.

The animal is then perfused with neutral buffered formaldehyde (10% formalin or 4% paraformaldehyde in 0,1M neutral phosphate buffer). The brain is removed and postfixed for a least overnight in the same fixative solution plus 20% sucrose for cryo-protection. The brain is then cut on a freezing sliding microtome or cryostat into sections usually between 20 and 40 microns in thickness.

The tissue sections are mounted on gelatin coated slides and are air dried on a slide warmer at 50-60°C for at least one half hour. The dry slides are then transferred to xylene clearing solution or cryostat into sections usually between 20 and 40 microns in thickness.

The slides can then be examined under an epifluorescent microscope using a filter suitable for visualizing TRITC ($\lambda_{Ex/Em}$: 540/600nm).

Guidelines for use depend on applications. Furthermore differences in molecular weight of the dextran, net charge, degree of labeling and nature of the dye may affect the experiment. Please refer to the literature.

References

FT-18938B

Rutili G.and Arfors K.E., Passage across the capillary and blood lymph barrier, *Microvasc. res.*, 6:260 (1973) [TRITC-Dextran]

Related products

- Hydroxystilbamidine (FluoroGold) FP-40766A
- Hydroxystilbamidine 4% Solution, FP-JW7290
- Fast Blue, FP-CM0240
- True Blue Chloride, FP-M1159A
- Nuclear Yellow, FP-M1477B
- Histochoic Mounting media, 41927A

Ordering information

Catalog size quantities and prices may be found at http://www.interchim.com

Please inquire for higher quantities (availability, shipment conditions).

For any information, please ask : FluoProbes® / Interchim; Hotline : +33(0)4 70 03 73 06

Disclaimer : Materials from FluoProbes® are sold for research use only, and are not intended for food, drug, household, or cosmetic use. FluoProbes® is not liable for any damage resulting from handling or contact with this product.

Rev.RO4E-080707