# **BioSciences**

FT-006383

Name:

Catalog #:

**Properties:** 

Storage:

Name:

Catalog #:

**Properties:** 

Storage:

Name:

Synonyms:

Synonyms:

# **Cellobiose containing Oligosacharides**

## **Products Description**

Glucopyranosyl polymeric oligosaccharides

| Name:       | <b>D-(+)-Cellobiose</b>             |                         |  |
|-------------|-------------------------------------|-------------------------|--|
| Catalog #:  | 006383, 50g                         | 006385, 1Kg             |  |
|             | Glc-b-1,4-Glc<br>4-O-(b-D-Glucopyr  | anosyl)-D-glucopyranose |  |
|             | CAS: [528-50-7                      |                         |  |
| Properties: | MW: 342.29                          | 1                       |  |
|             | Melting Point:                      | 238-242°C               |  |
|             | Solubility:                         | in Water                |  |
| Storage:    | $-20^{\circ}$ C for long term (M)   |                         |  |
|             | Hygroscopic, Under Inert Atmosphere |                         |  |
|             |                                     |                         |  |

Cellotriose 748275, 5mg

CAS: [33404-34-1] MW: 504.45

**D-Cellotetraose** 828445, 5mg

CAS: [38819-01-1] MW: 666.58

Melting Point:

Solubility:

Melting Point:

Solubility:

748277, 50mg

>165(dec.)

828447, 50mg

205-209°C

in Water

in Water

+4°C (or  $-20^{\circ}$ C for long term) (K)

D-(+)-Cellotetraose; (Glc-b-1,4)<sub>3</sub>-Glc;

+4°C (or -20°C for long term) (K)

Hygroscopic, Under Inert Atmosphere

glucopyranosyl-(1-4)-D-glucose;

Hygroscopic, Under Inert Atmosphere

D-(+)-Cellotriose; O-β-D-Glucopyranosyl-(14)-O-β-D-

glucopyranosyl-(14)-D-glucose; (Glc1-b-4)2-D-Glc;



White powder, min.95% References: 1. Pitson SM, et al., Enzyme Microbiol. Technol. 1997, 21, p182 2. Beil. 17/7, V, 191



White powder, min.95%



White to off-white powder, min.95%



For Research Use Only

interbiotech@interchim.com

BioSciences Innovations®, powered by 213 Avenue J.F. Kennedy - BP 1140 03103 Montluçon Cedex - France Tél. 04 70 03 88 55 - Fax 04 70 03 82 60 interchim

P.1

## FT-006383

#### **Applications:**

#### Biochemistry

These oligosaccharides and other cellulodextrins, are used by cellulosic bacteria as sources of energy. They are used to help identify, differentiate and characterize oligosaccharide metabolizing enzymes.

#### Introduction • Cellulotriose

Cellulotriose is a 3-glucose polymer cellulodextrin derived from cellulose degradation.

#### • Cellotetraose

Cellotetraose is a substrate for many cellulases and for  $1,4-\beta$ -D-glucan glucohydrolases. It is also the end product of some cellulases, such as Cel9R from Clostridium thermocellum. This 4-glucose polymer cellulodextrin is derived from cellulose degradation.

#### **References – for Cellotriose & Cellotetraose**

Apo- and cellopentaose-bound structures of the bacterial cellulose synthase subunit BcsZ. Mazur O, Zimmer J. J. Biol. Chem. 286, 17601-17606, (2011)

 $Cellulose, a very abundant extracellular polysaccharide, is synthesized in a finely tuned process that involves the activity of glycosyl-transferases and hydrolases. The cellulose microfibril consists of bundles of linear <math display="inline">\beta$ -1,4-glucan chains that are...

Diverse substrate recognition mechanism revealed by Thermotoga maritima Cel5A structures in complex with cellotetraose, cellobiose and mannotriose. Wu TH, Huang CH, Ko TP, et al. Biochim. Biophys. Acta 1814, 1832-1840, (2011)

The hyperthermophilic endoglucanase Cel5A from Thermotoga maritima can find applications in lignocellulosic biofuel production, because it catalyzes the hydrolysis of glucan- and mannan-based polysaccharides. Here, we report the crystal structures in...

Isomeric distinction of small oligosaccharides: a bottom-up approach using the kinetic method. Major M, Fouquet T, Charles L. J. Am. Soc. Mass Spectrom. 22, 1252-1259, (2011)

Isomeric distinction of di- and tri-saccharides could be efficiently achieved by using data previously obtained while performing experiments aimed at discriminating monosaccharides using trimeric ion dissociation with data analysis by the kinetic met...

Kinetic characterization of a glycoside hydrolase family 44 xyloglucanase/endoglucanase from Ruminococcus flavefaciens FD-1. Warner CD, Go RM, García-Salinas C, et al. Enzyme Microb. Technol. 48, 27-32, (2011)

Two forms of Ruminococcus flavefaciens FD-1 endoglucanase B, a member of glycoside hydrolase family 44, one with only a catalytic domain and the other with a catalytic domain and a carbohydrate binding domain (CBM), were produced. Both forms hydrolyz...

Identification of an extracellular thermostable glycosyl hydrolase family 13  $\alpha$ -amylase from Thermotoga neapolitana. Choi KH, Hwang S, Lee HS, Cha J. J. Microbiol. 49, 628-634, (2011)

We cloned the gene for an extracellular  $\alpha$ -amylase, AmyE, from the hyperthermophilic bacterium Thermotoga neapolitana and expressed it in Escherichia coli. The molecular mass of the enzyme was 92 kDa as a monomer. Maximum activity was observed at pH 6...

Substrate binding of a GH5 endoglucanase from the ruminal fungus Piromyces rhizinflata. Tseng CW, Ko TP, Guo RT, et al. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 67, 1189-1194, (2011)

The endoglucanase EglA from Piromyces rhizinflata found in cattle stomach belongs to the GH5 family of glycoside hydrolases. The crystal structure of the catalytic domain of EglA shows the  $(\beta/\alpha)(8)$ -barrel fold typical of GH5 enzymes. Adjacent to the ...

Expression, purification and characterization of two thermostable endoglucanases cloned from a lignocellulosic decomposing fungi Aspergillus fumigatus Z5 isolated from compost. Liu D, Zhang R, Yang X, et al. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 79, 176-186, (2011)

Dissecting structure-function-stability relationships of a thermostable GH5-CBM3 cellulase from Bacillus subtilis 168. Santos CR, Paiva JH, Sforça ML, et al. Biochem. J. 441, 95-104, (2012)

Cellulases participate in a number of biological events, such as plant cell wall remodelling, nematode parasitism and microbial carbon uptake. Their ability to depolymerize crystalline cellulose is of great biotechnological interest for environmental...

The role of the oligosaccharide binding cleft of rice BGlu1 in hydrolysis of cellooligosaccharides and in their synthesis by rice BGlu1 glycosynthase. Pengthaisong S, Withers SG, et al. Protein Sci. 21(3), 362-72, (2012)

Rice BGlu1  $\beta$ -glucosidase nucleophile mutant E386G is a glycosynthase that can synthesize p-nitrophenyl (pNP)-cellooligosaccharides of up to 11 residues. The X-ray crystal structures of the E386G glycosynthase with and without  $\alpha$ -glucosyl fluoride were...

### Other Cellobiose containing oligosaccaharides

| CAS N°      | Product Name                                | Item N° |
|-------------|---------------------------------------------|---------|
| 42935-24-0  | 4-Aminophenyl b-D-cellobioside              | EA05142 |
| 35405-71-1  | 1,6-Anhydro-b-D-cellobiose                  | OA07141 |
| 177966-52-8 | 5-Bromo-4-chloro-3-indolyl b-D-cellobioside | EB03309 |
| 528-50-7    | D-Cellobiose - carbohydrate mixed kit 01    | UC07548 |
| 528-50-7    | <u>D-Cellobiose</u>                         | OC04040 |
| 5346-90-7   | D-Cellobiose octaacetate                    | OC05954 |

interbiotech@interchim.com

BioSciences Innovations<sup>®</sup>, powered by interchim <sup>213</sup> Avenue J.F. Kennedy - BP 1140 <sup>213</sup> Montlucon Cedex - France Tel. 047 00 38 85 5 - France Tel. 047 00 38 85 5 - France 32 50

# **BioSciences**

| FT-006383          |                                                                          |                     |
|--------------------|--------------------------------------------------------------------------|---------------------|
| 69194-62-3         | b-Cellobiosyl azide                                                      | MC05699             |
| 5551-59-7          | Cellobiuronic acid                                                       | MC04373             |
|                    | Cellodextrins                                                            | OC11690             |
| 52646-27-2         | D-Celloheptaose                                                          | OC05241             |
| 2478-35-5          | <u>D-Cellohexaose</u>                                                    | OC06512             |
| 355012-91-8        | D-(+)-Cellohexose eicosaacetate                                          | OC16452             |
|                    | D-Cellohexose eicosaacetate                                              | OC04684             |
| 2240-27-9          | D-Cellopentaose                                                          | OC04683             |
| 83058-38-2         | D-Cellopentose heptadecaacetate                                          | OC06514             |
| 38819-01-1         | <u>D-Cellotetraose</u>                                                   | OC04674             |
| 83058-25-7         | D-Cellotetraose tetradecaacetate                                         | OC04693             |
| 33404-34-1         | <u>D-Cellotriose</u>                                                     | OC05719             |
| 17690-94-7         | D-Cellotriose undecaacetate                                              | OC04692             |
| 425427-87-8        | 6-Chloro-3-indolyl b-D-cellobioside                                      | EC03250             |
| 135743-28-1        | 2-Chloro-4-nitrophenyl b-D-cellobioside                                  | EC01941             |
|                    | 6-Chloro-4-(trifluoromethyl)umbelliferyl-b-D-cellotetraoside             | EC28872             |
|                    | 6,8-Difluoro-4-methylumbelliferyl-b-D-cellotetraoside                    | ED28873             |
|                    | Dodecyl b-D-cellobioside                                                 | DD11096             |
|                    | 4-O-(b-D-Glucopyranosyl)-b-D-thioglucopyranose                           | OG10933             |
| 14227-66-8         | 2,3,6,2',3',4',6'-Hepta-O-acetyl-a-D-cellobiosyl bromide                 | OH04128             |
| 38631-27-5         | 2,3,2',3',4',6'-Hexa-O-acetyl-1,6-anhydro-b-D-cellobiose                 | OH08980             |
| 106445-30-1        | 8-Methoxycarbonyloctyl 4-O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-b-D | -glucopyranosyl)-2- |
| deoxy-3-O-benzyl-2 | -phthalimido-b-D-glucopyranoside                                         | OM06842             |
| 72626-61-0         | 4-Methylumbelliferyl b-D-cellobioside                                    | EM08000             |
|                    | 4-Methylumbelliferyl b-D-celloheptaoside                                 | EM28810             |
| 84325-21-3         | 4-Methylumbelliferyl b-D-cellohexoside                                   | EM28809             |
| 84325-20-2         | 4-Methylumbelliferyl b-D-cellopentoside                                  | EM03924             |
| 84325-19-9         | 4-Methylumbelliferyl b-D-cellotetroside                                  | EM04814             |
| 84325-18-8         | 4-Methylumbelliferyl b-D-cellotrioside                                   | EM07217             |
| 3482-57-3          | 4-Nitrophenyl b-D-cellobioside                                           | EN04798             |
| 70867-33-3         | 2-Nitrophenyl b-D-cellobioside                                           | EN03286             |
| 70867-22-0         | 2-Nitrophenyl b-D-cellobioside heptaacetate                              | EN07318             |
|                    | 4-Nitrophenyl b-D-cellobioside heptaacetate                              | EN07317             |
| 69948-03-4         | p-Nitrophenyl b-D-cellobioside heptacetate                               | ON16482             |
|                    | 4-Nitrophenyl b-D-celloheptaoside                                        | ON10193             |
|                    | 4-Nitrophenyl b-D-cellohexaoside                                         | ON10194             |
| 129411-63-8        | 4-Nitrophenyl b-D-cellopentaoside                                        | EN06431             |
| 129411-66-1        | p-Nitrophenyl b-D-cellopentaoside, hexadecaacetate                       | ON16483             |
|                    | 4-Nitrophenyl b-D-cellopentaoside hexadecaacetate                        | EN07316             |
| 129411-62-7        | 4-Nitrophenyl b-D-cellotetraoside                                        | EN05261             |
| 106927-48-4        | 4-Nitrophenyl b-D-cellotrioside                                          | EN04796             |
|                    | Resorufin cellobioside                                                   | FR28833             |
|                    | 4-(Trifluoromethyl)umbelliferyl-b-D-cellotetraoside                      | ET28871             |
| CAS N°             | Product Name                                                             | Item N°             |
| 9012-54-8          | Cellulase                                                                | MC05790             |
|                    | Cellulose catalase                                                       | MC01380             |
| 9035-69-2          | Cellulose diacetate                                                      | MC02836             |
| 9004-58-4          | Ethyl hydroxyethyl cellulose                                             | OE30633             |
| 9004-62-0          | Hydroxyethyl cellulose                                                   | OH30634             |
| 9004-64-2          | Hydroxypropyl cellulose - Average MW 100.000                             | OH16040             |
| 9004-67-5          | Methyl cellulose                                                         | OM30635             |
| 9032-42-2          | Methyl 2-hydroxyethyl cellulose                                          | OM30632             |
|                    | Micro crystalline cellulose                                              | FM01523             |
| 59122-46-2         | Misoprostol. 1% in cellulose                                             | FM26017             |
| ······             | Sodium carboxymethyl-cellulose                                           | FS03666             |
|                    |                                                                          |                     |

## Other available oligosaccharides

Liste available here

interbiotech@interchim.com

BioSciences Innovations<sup>®</sup>, powered by <sup>213</sup> Avenue J.F. Kennedy - BP 1140 <sup>213</sup> Montlucon Cedar - France <sup>214</sup> Old 70 03 88 55 - Fax 04 70 03 82 60 FT-006383

### Available monosaccharides Liste available here

## Related / associated products and documents

See Product hightlights, BioSciences Innovations catalogue and e-search tool.

## **Ordering information**

Catalog size quantities and prices may be found at <u>http://www.interchim.com</u>. Please inquire for higher quantities (availability, shipment conditions).

Please contact InterBioTech – Interchim for any other information Hotline : +33(0)4 70 03 73 06 – <u>Interbiotech@interchim.com</u>

Disclaimer : Materials are sold for research use only, and are not intended for food, drug, household, or cosmetic use. Interchim<sup>®</sup> is not liable for any damage resulting from handling or contact with this product.

interbiotech@interchim.com