

Chromatography Catalog

TOSOH BIOSCIENCE

ABOUT US

WITH A GLOBAL PERSPECTIVE.

TOSOH BIOSCIENCE GmbH, Separations Business Unit, Stuttgart, is an acknowledged global leader in the field of bioseparations. Established as TosoHaas in 1987, the original joint venture between Tosoh Corporation of Japan and the Rohm and Haas Company, USA, has become synonymous with advanced products and quality support. In the year 2000, Tosoh Corporation acquired a 100% controlling interest changing the name to TOSOH BIOSEP. In the course of unifying all Tosoh affiliates, the new Brand Name Tosoh Bioscience evolved. Today, the two branches, Bioseparations and Diagnostics operate with the same name Tosoh Bioscience - Separations Business Unit and accordingly Diagnostics Business Unit. Tosoh manufacturing sites in Japan provide products to the sales and support subsidiaries in the U.S. and Europe, ensuring full global coverage. Over the last 30 years, TSKgel SW columns have become the worldwide industry standard for size exclusion chromatography of biomolecules.

1 TOSOH BIOSCIENCE GMBH

ZETTACHRING 6 70567 STUTTGART GERMANY

T - + 49 (0) 711 - 13257 - 0 F - + 49 (0) 711 - 13257 - 89 INFO.TBG@TOSOH.COM WWW.TOSOHBIOSCIENCE.COM

2 TOSOH BIOSCIENCE LLC

3604 HORIZON DRIVE, SUITE 100 KING OF PRUSSIA, PA 19406, USA

T - +1 484-805-1219 F - +1 610-272-3028 INFO.TBL@TOSOH.COM WWW.TOSOHBIOSCIENCE.COM

3 TOSOH CORPORATION

3-8-2 SHIBA, MINATO-KU TOKYO 105-8623 JAPAN

T - +81 3-5427-5118 F - +81 3-5427-5198 INFO@TOSOH.CO.JP WWW.TOSOHBIOSCIENCE.COM

1

4 TOSOH BIOSCIENCE SHANGHAI CO. LTD ROOM 301, PLAZA B, NO. 1289 YI SHAN ROAD

XU HUI DISTRICT SHANGHAI, 200233, CHINA T -+86 21-3461-0856 F - +86 21-3461-0858 INFO@TOSOH.COM.CN WWW.SEPARATIONS.ASIA.TOSOHBIOSCIENCE.COM

5 TOSOH ASIA PTE. LTD

2

63 MARKET STREET #10-03 SINGAPORE 048942, SINGAPORE

T -+65 6226-5106 F - +65 6226-5215 INFO@TOSOH.COM.SG WWW.SEPARATIONS.ASIA.TOSOHBIOSCIENCE.COM

TOSOH HISTORY

1935	FOUNDING OF TOYO SODA MANUFACTURING CO., LTD.
1936	OPERATION OF NANYO MANUFACTURING COMPLEX BEGINS
1971	SCIENTIFIC INSTRUMENTS DIVISION FORMED, FIRST GPC COLUMN USING TSKgel DEVELOPED BY TOSOH
1974	HIGH PERFORMANCE LIQUID CHROMATOGRAPHY COLUMN PLANT IS COMPLETED
1979	TOSOH DEVELOPS TOYOPEARL MEDIA
1983	TOSOH DEVELOPS HYDROPHOBIC INTERACTION MEDIA
1987	TOSOHAAS US OPERATIONS FORMED IN MONTGOMERYVILLE
1989	TOSOHAAS GMBH OPERATIONS FORMED IN STUTTGART
1995	TOSOH NANYO GEL FACILITY RECEIVES ISO 9001
2000	IN NOVEMBER FORMER TOSOHAAS US OPERATIONS BECOME TOSOH BIOSEP LLC, A 100% SUBSIDIARY OF TOSOH CORPORATION
2001	IN JANUARY FORMER TOSOHAAS GMBH EUROPEAN OPERATIONS BECOME TOSOH BIOSEP GMBH, A 100% SUBSIDIARY OF TOSOH CORPORATION
2002/	TOSOH CORPORATION ANNOUNCES THAT ALL TOSOH AFFILIATED SCIENTIFIC AND DIAGNOSTIC SYSTEM
2003	RELATED COMPANIES IN EUROPE, WILL BE UNIFIED UNDER THE NEW NAME TOSOH BIOSCIENCE
2008	ECOSEC , THE 7TH GENERATION GPC SYSTEM IS INTRODUCED GLOBALLY
2009	TOSOH BIOSCIENCE GMBH CELEBRATES ITS 20 [™] ANNIVERSARY IN STUTTGART
2010	TOSOH CELEBRATES ITS 75TH YEAR IN BUSINESS WITH THE OPENING OF FIVE NEW PLANTS, AND CONTINUED RAPID EXPANSION IN CHINA
2011	TOSOH BIOSCIENCE CELEBRATES 40 YEARS OF OPERATION

TOSOH BIOSCIENCE

>		ABOUT US
	page [00 - 01]	CONTENTS
	page [02 - 05]	GENERAL INTRODUCTION
	RPC	
	page [06 - 19]	REVERSED PHASE CHROMATOGRAPHY
	page [11 - 12] page [13 - 14]	ORDERING INFORMATION UNIVERSAL RPC COLUMNS ORDERING INFORMATION FAST RPC COLUMNS
	page [15 - 15]	ORDERING INFORMATION RPC COLUMNS FOR BIOMOLECULES
	page [16 - 16]	ORDERING INFORMATION POLYMER BASED RPC COLUMNS ORDERING INFORMATION TRADITIONAL RPC COLUMNS
	page [18 - 18]	
-	HILIC	
	page [20 - 29]	HYDROPHILIC INTERACTION CHROMATOGRAPHY
	page [28 - 28]	ORDERING INFORMATION
-	SEC	
	page [30 - 59]	SIZE EXCLUSION CHROMATOGRAPHY ORDERING INFORMATION TSKgel SW-TYPE
	page [39 - 40] page [47 - 47]	ORDERING INFORMATION TSKgel SW-TFFE
	page [51 - 51]	ORDERING INFORMATION TSKgel ALPHA-TYPE AND SUPERAW
	page [57 - 58]	ORDERING INFORMATION TSKgel H-TYPE AND MULTIPORE
-	IEC	
	page [60 - 75]	ION EXCHANGE CHROMATOGRAPHY
	page [70 - 70] page [75 - 75]	ORDERING INFORMATION ANION EXCHANGE COLUMNS ORDERING INFORMATION CATION EXCHANGE COLUMNS
	page [75 - 75]	
-	HIC	
	page [76 - 83]	HYDROPHOBIC INTERACTION CHROMATOGRAPHY ORDERING INFORMATION
	page [82 - 82]	
	AFC	
	page [84 - 89]	AFFINITY CHROMATOGRAPHY ORDERING INFORMATION
	page [89 - 89]	
-		OPMENT PRODUCTS AND BULK RESINS FOR LABORATORY PURIFICATION
	page [90 - 95]	PROCESS DEVELOPMENT PRODUCTS ORDERING INFORMATION
	page [94 - 95] page [96 - 103]	BULK RESINS
	page [102 - 103]	ORDERING INFORMATION
	page [104 - 109] page [110 - 111]	APPENDIX INDEX
	hage[[]].	

TOSOH BIOSCIENCE

INTRODUCTION

Tosoh Bioscience is a major supplier of liquid chromatography products worldwide, particularly to the pharmaceutical and biotechnology industries. The company distributes and supports products manufactured by our parent company, Tosoh Corporation, which has offices and manufacturing facilities in Japan. Located in Stuttgart, Germany, Tosoh Bioscience GmbH provides sales and service to customers in Europe, the Middle East, South Asia and Africa.

This Chromatography Products Catalog describes analytical and semipreparative TSKgel[®] prepacked columns for each of the major chromatography modes. It also gives a short overview of TOYOPEARL[®] and TSKgel bulk resins for laboratory scale purifications, as well as Toyo-Screen process development columns.

TSKgel and TOYOPEARL products are used for the analysis, isolation and purification of proteins, peptides, DNA, oligonucleotides, antibiotics and other small molecular weight compounds. Our products are known for their ability to withstand high pressure, their robust chemical stability, and their superior performance for the recovery, concentration and purification of biomolecules.

WHAT'S NEW

TSKgel SuperMultiporePW columns

A new TSKgel PW column line incorporating the company's proprietary multi-pore particle technology is extending the TSKgel SEC column portfolio. TSKgel SuperMultiporePW semi-micro SEC columns provide near linear calibration curves and are ideally suited to analyze the size distribution of water soluble polymers, such as polyvinylpyrrolidones or dextrans. The series comprises of three column types covering different molecular weight ranges.

TSKgel NH2-100 HILIC columns

A new, robust amino phase, TSKgel NH2-100, is expanding the selectivity range of TSKgel HILIC solutions. This HILIC phase is well suited for all separations requiring amino functional groups. In contrast to many other amino phases the new column offers expanded stability under HILIC conditions. It is based on a 3 μ m silica particle with 100 Å pores, which is treated with a proprietary endcapping procedure. Amino groups are introduced after endcapping and act as HILIC functional groups without any peak splits. Due to a high ligand density and large surface area TSKgel NH2-100V 3 μ m columns show high retention for very polar compounds.

TOYOPEARL AF-rProtein A-650F resin

The new TOYOPEARL AF-rProtein A-650F affinity resin is well-suited for high capacity capturing of Antibodies. It binds human and mouse immunoglobulin G (IgG) and Fab fragments. The resin combines a high hIgG dynamic binding capacity at short residence time and fast mass transfer kinetics with an improved alkaline stability. It provides a typical dynamic binding capacity for IgG of more than 30 mg/mL resin at two minutes residence time.

TOYOPEARL Q-600C-AR resin

TOYOPEARL Q-600C AR is a new anion exchange resin with an average particle size of 100 μ m. It is well-suited for high capacity capture of biotherapeutics or plasma proteins. 'AR' stands for alkaline resistance as the resin combines high dynamic binding capacity and fast mass transfer kinetics with an improved alkaline stability.

TSKgel SP-3PW resin

The new TSKgel SP-3PW (30) cation exchange resin was designed as a polishing resin with improved binding capacities for peptides and small proteins. It is a strong cation exchange resin having a smaller pore size than the corresponding TSKgel SP-5PW material and also a different selectivity. A typical DBC of about 50 g/L for insulin makes this resin attractive for all peptide purification tasks that involve a cation exchange step.

TSKgel COLUMNS

TSKgel columns are known worldwide for their reliability and suitability for a variety of chromatographic applications. Applications using TSK-gel columns are continuously published in the scientific journals and are listed in the current U.S. Pharmacopoeia (see Appendix C). Prepacked columns contain TSKgel media designed for the analysis of proteins, peptides, biopolymers and low molecular weight compounds by size exclusion, ion exchange, hydrophobic interaction, reversed phase, affinity and normal phase chromatography. The packings in the columns are either silica-based or polymeric-based material, in particle sizes ranging from 2 μ m to 20 μ m.

Columns are available in analytical to preparative sizes, in stainless steel, PEEK®, or glass. To ensure specified column performance and to maximize the longevity of your Tosoh columns, please note the guide-lines found in Appendix A for the use, cleaning, rehydration, and storage of your TSKgel columns.

TOYOSCREEN PROCESS DEVELOPMENT COLUMNS

ToyoScreen Process Development columns are available as an additional tool for convenient scale-up. These are easy-to-use, pre-packed columns containing Tosoh Bioscience's most popular TOYOPEARL resins. They provide a convenient, low-cost product for the evaluation of TOYOPEARL ligand chemistries. ToyoScreen Process Development columns are available in packages of six by 1mL and six by 5mL volumes for affinity, ion exchange and hydrophobic interaction chromatography.

TOYOPEARL AND TSKgel LABPAK MEDIA

LabPak products are small package sizes of TOYOPEARL and TSKgel bulk media products. Typically they contain three or four different ligand types offered for a particular chromatography mode. They are useful for developmental scientists who wish to familiarize themselves with resin physical properties in differing buffer systems. The larger resin amounts in LabPak products allow the packing of wider bore and longer columns than what is available in the ToyoScreen products. This helps the developmental scientist or engineer to measure more accurately, under actual packing conditions, the resin's dynamic binding capacity, and selectivity.

TSKgel RESINS

The same media used in TSKgel columns are also available in bulk. They are offered in particle sizes of 20 μm and 30 μm , for ion exchange and hydrophobic interaction chromatography. TSKgel media are the most efficient packing materials available from Tosoh Bioscience for process chromatography. In tandem with their high efficiency, high mechanical stability and permeability, TSKgel resins are an excellent choice under medium to high pressure conditions.

TOYOPEARL RESINS

TOYOPEARL resins are hydrophilic, macroporous, bulk bioprocessing media suitable for large-scale chromatographic applications. Because of their polymeric backbone structure, the rigid TOYOPEARL packings assure excellent pressure/flow characteristics. The media are stable over the pH range of 2-12 for normal operating conditions and pH 2-14 for cleaning conditions. The particle sizes are: 20-50 μ m superfine grade for the highest performance, 40-90 μ m medium grade for economical purification, and 50-150 μ m coarse grade for capture chromatography. Large pore sizes ensure greater capacity for high molecular weight molecules, while allowing faster separation and recycling times. TOYOPE-ARL media are available for size exclusion, ion exchange, hydrophobic interaction, and affinity chromatography.

For predictable results in scale-up, TOYOPEARL resins are based on the same chemistry as the prepacked TSKgel columns. This allows the seamless scale-up of methods developed on TSKgel columns to TOYO-PEARL, without additional optimization at pilot scale. In addition, TOYO-PEARL resins are also available in the ToyoScreen Process Development columns for convenient scouting and methods development.

ORDERING INFORMATION

Tosoh Bioscience chromatography products are sold directly or can be purchased from distributors. An up-to-date list of distributors is available on our website www.tosohbioscience.com. Orders may be placed by phone, fax or email. Tosoh Bioscience strives to ship all standard chromatography products within 24 hours of placing the order. Items that are not listed in the catalog may be provided as special (custom) products, which usually ship within four weeks. Contact your local Tosoh Bioscience office to discuss the availability of specialty products.

Contact us or a local chromatography products distributor for a copy of our terms and conditions of sale.

Tosoh Bioscience is fully committed to delivering quality products and service. TSKgel columns are accompanied by a chromatogram demonstrating the performance of a test mixture and by an OCS sheet that contains information about the Operating Conditions and Specifications for the column. Bulk TSKgel and TOYOPEARL media products are accompanied by a Certificate of Analysis. Despite our commitment to product quality, columns and resins occasionally perform differently than expected in a customer's application. Therefore, we ask you to inspect TSKgel and TOYOPEARL columns or media within 30 days of receipt by using the same conditions employed on the OCS sheet to ensure product performance. Let Tosoh Bioscience know within this 30-day period if the product does not meet the specifications on the OCS (Operating Conditions and Specifications) sheet and QC document, or as listed on the Certificate of Analysis. Subject to prior authorization, Tosoh Bioscience will accept the return of all products that do not perform according to specifications. If a product is authorized for return for reasons other than Tosoh Bioscience's error or because of a product defect, there will be a restocking charge of 10% of the list price or a minimum of 25 Furo.

FOR MORE INFORMATION

Full descriptions and example applications of Tosoh Bioscience chromatography products are provided in this catalog. Our website www. tosohbioscience.com provides complete product information as well as a literature library and chromatogram database.

For technical support, please call **+49(0)** 711 13257 57 or write an e-mail to: **techsupport.tbg@tosoh.com**

For pricing and availability, please contact our Customer Service department at +49(0) 711 13257 21 or customerservice.tbg@tosoh.com.

To receive a copy of our Process Chromatographic Media catalog or technical literature, please call **+49(0)711 13257 0** or contact **info.tbg@tosoh.com**.

A price list for Tosoh Bioscience Chromatography Products is published each December and may be requested by contacting the nearest Tosoh Bioscience office.

TOSOH BIOSCIENCE CHROMATOGRAPHY CATALOG

SAFETY DATA AND WARRANTY

Tosoh Bioscience provides Material Safety Data Sheets (MSDS) on all of its bulk resins. These sheets contain pertinent information that may be needed to protect employees and customers against any known health or safety hazards associated with our products. The end user is responsible for knowing all information and precautions disclosed in the MSDS and any other available materials provided by Tosoh Bioscience. The MSDS sets forth information concerning our products, describes precautions to be taken in the storage and handling of our products, and in the maintenance of the health and safety of persons exposed to our products, the public and the environment with respect to our products. The end user should convey such information and precautions to the persons who may be exposed to our products.

We also suggest contacting the supplier of other materials recommended for use with our products for appropriate health and safety precautions prior to their use.

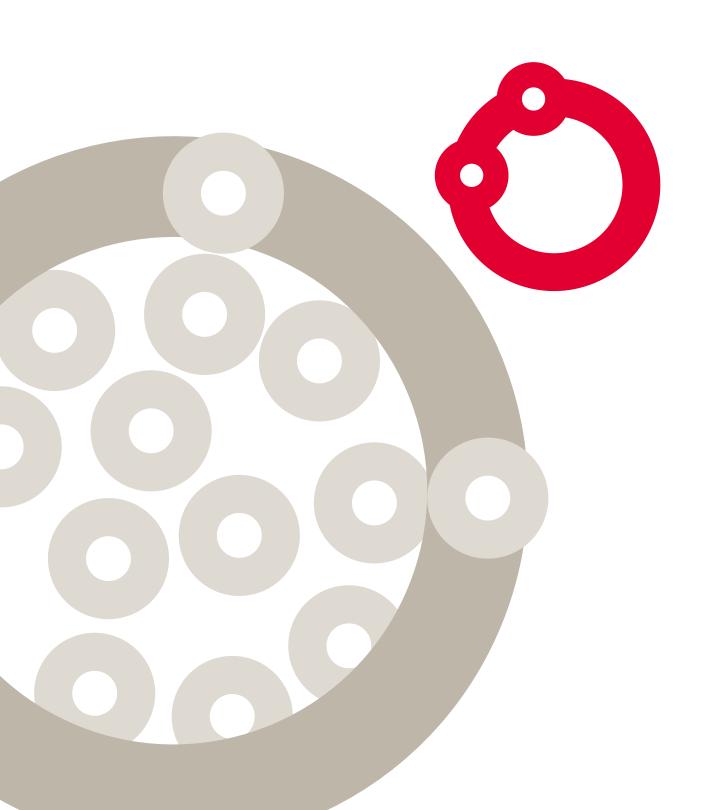
Many of our bulk products are on file with the FDA in the form of Drug Master Files (DMF) or Chemistry Manufacturing and Controls (CMC) documents. Permission to reference these documents may be obtained upon written request. Direct inquiries can be send to our Technical Service, Tosoh Bioscience GmbH, Zettachring 6, 70567 Stuttgart, Germany. Tosoh Bioscience warrants that at the time of delivery each of our products will conform to the specifications there of contained in the Certificate of Analysis (COA) or the Operating Conditions and Specifications (OCS) sheet, as relevant, as will be provided together with such products; provided, however, that the foregoing warranty applies only if the products have been properly handled, stored and used by Buyer.

THIS WARRANTY IS GIVEN AND ACCEPTED IN LIEU OF ANY OTHER WARRANTIES AND REPRESENTATIONS, EXPRESS OR IMPLIED, IN-CLUDING WITHOUT LIMITATION THOSE OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT SHALL TOSOH BIO-SCIENCE BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL OR CON-SEQUENTIAL DAMAGES OR DAMAGES FOR LOST PROFIT OR LOSS OF USE AS A RESULT OF ANY CLAIM BY BUYER OR ANY ACT OR OMIS-SION OF TOSOH BIOSCIENCE.

Please refer to Tosoh Bioscience's terms and conditions of sale for additional information on our warranty.

TECHNICAL DATA AND TRADEMARKS

The technical information and data herein contained (the Technical Data) are based on information Tosoh Bioscience believes to be reliable and are offered in good faith, but are given without warranty or representation, as the conditions of use and application by the end user of our products and the Technical Data are beyond the control of Tosoh Bioscience. The products should be tested against the Technical Data to determine if they will be suitable for the intended use and applications. Suggestions for the uses of our products should not be understood as recommending the use of our products in violation of any patent or other intellectual property right.


TOYOPEARL, TSKgel, TSKgel SuperMultipore, TSKgel STAT, SuperOligo, ToyoScreen, Tosoh Bioscience, TOYOPEARL MegaCap, TOYOPEARL GigaCap and BioAssist are registered trademarks of Tosoh Corporation, the parent company of Tosoh Bioscience.

ÄKTA is a registered trademark of GE Healthcare.

Pyrex is a registered trademark of Corning Incorporated.

Teflon and Tefzel are registered trademarks of E.I. du Pont de Nemours and Company.

RPC REVERSED PHASE CHROMATOGRAPHY

RPC PRODUCTS

UNIVERSAL RP COLUMNS

TSKgel ODS-100V TSKgel ODS-100Z

FAST RP COLUMNS

TSKgel ODS-140HTP TSKgel Super-ODS TSKgel Super-Octyl TSKgel Super-Phenyl

RP COLUMNS FOR BIOMOLECULES

TSKgel OligoDNA RP TSKgel TMS-250

POLYMER BASED RP COLUMNS

TSKgel Octadecyl-NPR TSKgel Octadecyl-2PW TSKgel Octadecyl-4PW TSKgel Phenyl-5PW RP

TRADITIONAL RP COLUMNS

TSKgel ODS-80Ts TSKgel ODS-80TM TSKgel Octyl-80Ts TSKgel CN-80Ts TSKgel ODS-120A TSKgel ODS-120T

= TOSOH FACT

Tosoh Bioscience, part of the Specialty Group Division of Tosoh Corporation, is a leading supplier of chromatographic columns, media and sophisticated clinical diagnostic systems.

TSKgel, TOYOPEARL and our other branded chromatography products have evolved over more than three decades from the measurement and analysis of polymers and organic compounds to development in the bioscience age with the analysis, separation and purification of proteins.

Experts and knowledgeable industry observers in areas from academia, government and scientific institutions praise the achievements of Tosoh Corporation in the fields of bioanalysis and purification.

2

HIGHLIGHTS

PC

- Ultra-pure silica minimizes sample adsorption
- High surface area (450 m²/g) silica
- Spherical 3 and 5 μm particles with 100 Å pores
- Very high column efficiency
- Moderate column back pressure
- Two levels of hydrophobicity: 15% carbon (100V) 20% carbon (100Z)
- Monomeric bonding chemistry
- Low residual silanol content

TSKgel ODS-100V & TSKgel ODS-100Z columns incorporate the best-inclass surface properties to limit secondary interactions of basic, acidic and chelating compounds. The ultra high purity Type B base silica contains negligible amounts of metal ion impurities.

TSKgel ODS-100V provides strong retention for polar compounds due to its lower C18 ligand density (15% carbon content). Proprietary monomeric bonded phase chemistry provides complete wetting and retention stability in 100% aqueous mobile phases.

The TSKgel ODS-100V and TSKgel ODS-100Z column lines were expanded to include 3 μm packed columns. These columns are well suited for high throughput LC/MS applications, providing fast and efficient separations.

TSKgel ODS-100Z contains a high density (20% carbon content) monomeric C18 bonded phase for maximum retention and selectivity of small molecular weight compounds. Exhaustive endcapping prevents secondary interaction with residual silanol groups.

	TSKgel ODS-100V	TSKgel ODS-100Z
Carbon content	15%	20%
Particle size (µm)	3 and 5	3 and 5
Endcapped	Yes (1)	Yes (2)
Pore size (Å)	100	100
Preferred sample type	Polar, basic, acidic	Hydrophobic
Bonded phase structure	Monolayer	Monolayer
Specific surface area (m²/g)	450	450
*Asymmetry factor (10%)	0,90 - 1,15	0,90 - 1,15
*Theoretical plates	>14.000	>14.000

* Specifications for 4.6 mm ID x 15 cm L columns packed with 5 μm particles. Conditions: 70% methanol, 30% water; Flow Rate: 1 mL/min; Temp.: 40°C, N and AF are based on naphthalene peak. Typical pressure: 6 MPa

(1) Prepared by an incomplete first reaction with a difunctional octadecylsilane reagent, which is followed by endcapping with a mixture of two difunctional dialkylsilane reagents.

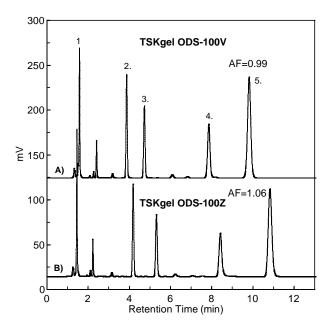
(2) Prepared by bonding the surface with a difunctional octadecylsilane reagent, followed by repeated endcapping with monofunctional trimethylsilane reagent.

RPC

ñ

APPLICATIONS OF TSKgel ODS-100V / ODS-100Z

SRM 870

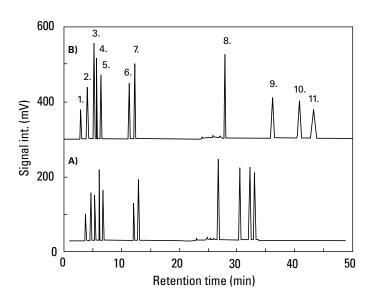

Standard Reference Material SRM 870 was developed by NIST (National Institute of Standards and Technology) as a means to classify the many commercially available reversed phase columns into closely-related groups. Amitriptyline, a tertiary amine, and quinizarin, a strong chelating compound, are included in the SRM 870 mixture, together with more traditional compounds. As shown in FIGURE 1, symmetrical peaks are obtained on TSKgel ODS-100V and TSKgel ODS-100Z for the compounds in this test mixture, clearly demonstrating the superior performance of these columns for the analysis of basic and chelating compounds.

VITAMINS

Simple and fast analysis of water- and lipid-soluble vitamins is possible on the TSKgel ODS-100V and TSKgel ODS-100Z columns, as shown in FIGURE 2. Clearly the TSKgel ODS-100Z column provides better overall resolution for the polar compounds in the mixture, while much shorter analysis time was obtained on TSKgel ODS-100V for the late eluting non-polar compounds.

➡ FIGURE 1 _____

Standard Reference Material SRM 879



Columns: (A) TSKgel ODS-100V 3 μm (4.6 mm lD x 15 cm L) (B) TSKgel ODS-100Z 3 μm (4.6 mm lD x 15 cm L);

Eluent: 20 mmol/L Phosphate buffer (pH 7.0)/MeOH (20/80);

Flow rate: 1.0 mL/min; Detection: UV@254nm; Tep.: 40°C; Inj. volume: 10 μ L; Sample: 1. Uracil, 2. Toluene, 3. Ethyl benzene, 4. Quinizarin, 5. Amitriptyline

FIGURE 2 Analysis of Vitamins

Columns: (A) TSKgel ODS-100V (4.6 mm ID x 15 cm L) (B) TSKgel ODS-100Z (4.6 mm ID x 15 cm L);

Eluent: (A) 0.1% TFA in H₂O; (B) 0.1 % TFA in ACN,

Gradient: 0 min (B: 0%) - 20 min (B: 40%) - 22 min (B: 100%) - 50 min (B: 100%); Flow rate: 1.0 mL/min.; Temp.: 40°C; Detection: UV@280nm;

Inj. volume: 5 μL; Samples: 1. L-Ascorbic acid, 2. Nicotinic acid, 3. Thiamine,
4. Pyridoxal, 5. Pyridoxine, 6. Caffeine, 7. Riboflavin, 8. Retinol, 9. δ-Tocopherol,
10. α-Tocopherol, 11. α-Tocopherol acetateA)

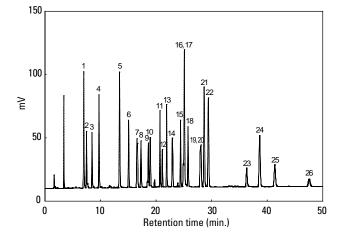
APPLICATIONS OF TSKgel ODS-100V /ODS-100Z

ORGANIC ACIDS

PC

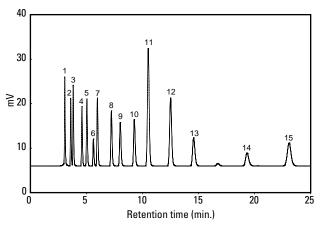
Organic acids play an important role in many metabolic processes, fermentation and food products. FIGURE 3 shows a baseline separation of 15 organic acids in less than 25 minutes using a simple 0.1% phosphoric acid mobile phase.

POLYMER ADDITIVES


A baseline separation of 26 well known polymer additives is shown in FIGURE 4. Note that while a simple linear acetonitrile gradient was used, the column temperature was increased to 50°C to achieve the required baseline separation on a TSKgel ODS-100V column.

NUCLEOTIDES

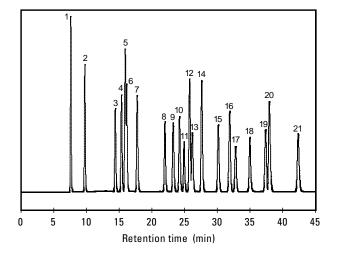
The analysis of mono-, di-, and tri-phosphorylated nucleotides on a TSKgel ODS-100V column is shown below (FIGURE 5). The separation is accomplished by adding a short chain ion pairing agent, *t*-butylamine, and adjusting the mobile phase pH to 6.8.


FIGURE 4

Analysis of Polymer Additives with TSKgel ODS-100V

Column: TSKgel ODS-100V (4.6mm ID × 15 cm L); Mobile phases: (A) H_2O (B) ACN; Gradient: 0 min (B: 60%) - 20 min (B: 100%); Flow rate: 1.0 mL/min; Temp: 50 °C; Detection: UV@225nm; Inj. Volume: 10 μ L; Concentration: 10 mg/L each; Samples: 1. Cyasorb UV-24, 2. BHA, 3. Ionox 100, 4. Seesorb 101, 5. Tinuvin P, 6. Yoshinox SR, 7. Seesorb 202, 8. BHT, 9. Noclizer M-17, 10. Yoshinox 2246R, 11. Topanol CA, 12. Yoshinox 425, 13. Cyanox 1790, 14. Cyasorb UV-531, 15. Ionox 220, 16. Nonflex CBP, 17. Tinuvin 326, 18. Tinuvin 120, 19. Irganox 3114, 20. Uvtex OB, 21. Tinuvin 327, 22. Tinuvin 328, 23. Irganox 1010, 24. Irganox 1330, 25. Irganox 1076, 26. Irgafos 168050100

FIGURE 3 Analysis of Organic Acids with TSKgel ODS-100V



Column: TSKgel ODS-100V (4.6 mm ID × 25 cm L)

Mobile phase: 0.1 % H₃PO₄, (pH 2.3); Flow rate: 1.0 mL/min;

Temp: 40 °C; Inj. Volume: 10 μL; Samples: 1. Oxalic acid (0.1 mg/mL) 2. L-Tartaric acid (0.5 mg/mL) 3. Formic acid (1.0 mg/mL) 4. L-Malic acid (1.0 mg/mL) 5.L-Ascorbic acid (0.1 mg/mL) 6. Lactic acid (1.0 mg/mL) 7. Acetic acid (1.0 mg/mL) 8. Maleic acid (0.01 mg/mL) 9. Citric acid (1.0 mg/mL) 10. Succinic acid (1.0 mg/mL) 11. Fumaric acid (0.025 mg/mL) 12. Acrylic acid (0.1 mg/mL) 13. Propionic acid (2.0 mg/mL) 14. Glutaric acid (1.0 mg/mL) 15. Itaconic acid (0.025 mg/mL)

FIGURE 5 Analysis of Nucleotices with TSKgel ODS-100V

Column: TSKgel ODS-100V (4.6 mm ID × 25 cm L)

Mobile phases: (A) 20 mmol/L t-butylamine + H₃PO₄ (pH 6.8) (B) A/MeOH (90/10); Gradient: 0 min (B: 0%) - 35 min (B: 100%); Flow rate: 1.0 mL/min; Temp: 25 °C; Detection: UV@260nm; Inj. Volume: 2µL; Concentration: 0.3 g/L each; Samples: 1. CMP, 2. UMP, 3. CDP, 4. dUMP, 5. GMP, 6. IMP, 7. UDP, 8. CTP, 9. TMP, 10. GDP, 11. IDP, 12. AMP, 13. UTP, 14. dGMP, 15. TDP, 16. GTP, 17. ITP, 18. ADP, 19. TTP, 20. dAMP, 21. ATP

RPC

	DERING INFORMATION							
Part #	Description	ID	Length	Particle		<u>Flow rate (ml</u>		Maximum
		(<i>mm</i>)	(cm)	size (µm)	theoretical plates	Range	Max.	pressure drop (MPa)
TSKgel S	tainless steel columns				plates			urop (ivir a)
21838	ODS-100V, 100 Å	1.0	3.5	3	≥ 2,900	0.02 - 0.05	0.22	15.0
21839	ODS-100V, 100 Å	1.0	5.0	3	≥ 4,500	0.02 - 0.05	0.22	15.0
21814	ODS-100V, 100 Å, pk 3*	2.0	1.0	3	≥ 500		0.22	30.0
22700	ODS-100V, 100 Å	2.0	2.0	3	≥ 1,500			12.0
21813	ODS-100V, 100 Å	2.0	3.5	3	≥ 4,000	0.15 - 0.18	0.22	15.0
21812	ODS-100V, 100 Å	2.0	5.0	3	≥ 5,700	0.15 - 0.18	0.22	15.0
21811	ODS-100V, 100 Å	2.0	7.5	3	≥ 8,600	0.15 - 0.18	0.22	21.0
21938	ODS-100V, 100 Å	2.0	10.0	3	≥ 11,500	0.15 - 0.18	0.22	24.0
21810	ODS-100V, 100 Å	2.0	15.0	3	≥ 17,500	0.15 - 0.18	0.22	25.0
22701	ODS-100V, 100 Å	2.0	25.0	3	≥ 28,000			30.0
22702	ODS-100V, 100 Å	3.0	2.0	3	≥ 2,000			12.0
22703	ODS-100V, 100 Å	3.0	3.5	3	≥ 4,000			12.0
21842	ODS-100V, 100 Å	3.0	5.0	3	≥ 6,000			15.0
21843	ODS-100V, 100 Å	3.0	7.5	3	≥ 9,000			21.0
21939	ODS-100V, 100 Å	3.0	10.0	3	≥ 12,000			24.0
21844	ODS-100V, 100 Å	3.0	15.0	3	≥ 18,000			24.0
22704	ODS-100V, 100 Å	3.0	25.0	3	≥ 29,000			30.0
22705	ODS-100V, 100 Å	4.6	2.0	3	≥ 2,500			12.0
22706	ODS-100V, 100 Å	4.6	3.5	3	≥ 4,500			12.0
21831	0DS-100V, 100 Å	4.6	5.0	3	≥ 6,500	0.7 - 1.0	1.2	15.0
21830	0DS-100V, 100 Å	4.6	7.5	3	≥ 9,750	0.7 - 1.0	1.2	21.0
21940	ODS-100V, 100 Å	4.6	10.0	3	≥ 13,500	0.7 - 1.0	1.2	24.0
21829	ODS-100V, 100 Å	4.6	15.0	3	≥ 19,500	0.7 - 1.0	1.2	24.0
22707	0DS-100V, 100 Å	4.6	25.0	3	≥ 30,000			30.0
21457	0DS-100V, 100 Å	2.0	5.0	5	≥ 3,000	0.15 - 0.18	0.22	18.0
22708	ODS-100V, 100 Å, pk 3*	2.0	1.0	5	≥ 300			28.0
22709	ODS-100V, 100 Å	2.0	2.0	5	≥ 1,000			9.0
22710	ODS-100V, 100 Å	2.0	3.5	5	≥ 2,500			9.0
22711	ODS-100V, 100 Å	2.0	7.5	5	≥ 5,500			18.0
22712	ODS-100V, 100 Å	2.0	10.0	5	≥ 7,000			18.0
21458	ODS-100V, 100 Å	2.0	15.0	5	≥ 11,000	0.15 - 0.18	0.22	18.0
22713	ODS-100V, 100 Å	2.0	25.0	5	≥ 18,000			18.0
22714	ODS-100V, 100 Å	3.0	2.0	5	≥ 1,000			9.0
22715	ODS-100V, 100 Å	3.0	3.5	5	≥ 3,000			9.0
22716	ODS-100V, 100 Å	3.0	5.0	5	≥ 4,000			12.0
22717	ODS-100V, 100 Å	3.0	7.5	5	≥ 6,000			18.0
22718	ODS-100V, 100 Å	3.0	10.0	5	≥ 8,500			18.0
22719	ODS-100V, 100 Å	3.0	15.0	5	≥ 13,000			18.0
22720	ODS-100V, 100 Å	3.0	25.0	5	≥ 21,000			18.0
22721	ODS-100V, 100 Å	4.6	2.0	5	≥ 1,500			9.0
22722	ODS-100V, 100 Å	4.6	3.5	5	≥ 3,000			9.0
22723	ODS-100V, 100 Å	4.6	5.0	5	≥ 4,500			12.0
22724	ODS-100V, 100 Å	4.6	7.5	5	≥ 7,000			18.0
22725	ODS-100V, 100 Å	4.6	10.0	5	≥ 9,000			18.0
21455	ODS-100V, 100 Å	4.6	15.0	5	≥ 14,000	0.7 - 1.0	1.2	18.0
21456	ODS-100V, 100 Å	4.6	25.0	5	≥ 23,000	0.7 - 1.0	1.2	21.0
22726	ODS-100Z, 100 Å, pk 3*	2.0	1.0	3	≥ 500			30.0
22727	ODS-100Z, 100 Å	2.0	2.0	3	≥ 1,500			12.0

11 3

RPC

12

RPC

TOSOH

Part #	Description	ID	Length	Particle	Number	Flow rate (mL/	min)	Maximum
	2000	(<i>mm</i>)	(cm)	size (µm)	theoretical		Max.	pressure
		1	10,	(p)	plates			drop (MPa)
22728	0DS-100Z, 100 Å	2.0	3.5	3	≥ 4,000			15.0
22729	0DS-100Z, 100 Å	2.0	5.0	3	≥ 5,700			15.0
22730	ODS-100Z, 100 Å	2.0	7.5	3	≥ 8,600			21.0
22731	0DS-100Z, 100 Å	2.0	10.0	3	≥ 11,500			24.0
22732	0DS-100Z, 100 Å	2.0	15.0	3	≥ 17,500			24.0
22733	0DS-100Z, 100 Å	2.0	25.0	3	≥ 28,000			30.0
22734	0DS-100Z, 100 Å	3.0	2.0	3	≥ 2,000			12.0
22735	0DS-100Z, 100 Å	3.0	3.5	3	≥ 4,000			12.0
22736	0DS-100Z, 100 Å	3.0	5.0	3	≥ 6,000			15.0
22737	0DS-100Z, 100 Å	3.0	7.5	3	≥ 9,000			21.0
22738	ODS-100Z, 100 Å	3.0	10.0	3	≥ 12,000			24.0
22739	0DS-100Z, 100 Å	3.0	15.0	3	≥ 18,000			24.0
22740	0DS-100Z, 100 Å	3.0	25.0	3	≥ 29,000			30.0
22741	ODS-100Z, 100 Å	4.6	2.0	3	≥ 2,500			12.0
22742	ODS-100Z, 100 Å	4.6	3.5	3	≥ 4,500			12.0
22743	0DS-100Z, 100 Å	4.6	5.0	3	≥ 6,500			15.0
22744	0DS-100Z, 100 Å	4.6	7.5	3	≥ 9,750			21.0
22745	0DS-100Z, 100 Å	4.6	10.0	3	≥ 13,500			24.0
22746	0DS-100Z, 100 Å	4.6	15.0	3	≥ 19,500			24.0
22747	0DS-100Z, 100 Å	4.6	25.0	3	≥ 30,000			30.0
22748	ODS-100Z, 100 Å, pk 3*	2.0	1.0	5	≥ 300			28.0
22749	0DS-100Z, 100 Å	2.0	2.0	5	≥ 1,000			9.0
22750	0DS-100Z, 100 Å	2.0	3.5	5	≥ 2,500			9.0
21460	0DS-100Z, 100 Å	2.0	5.0	5	≥ 3,000	0.15 - 0.18	0.22	18.0
22751	0DS-100Z, 100 Å	2.0	7.5	5	≥ 5,500			18.0
22752	0DS-100Z, 100 Å	2.0	10.0	5	≥ 7,000			18.0
21459	0DS-100Z, 100 Å	2.0	15.0	5	≥ 11,000	0.15 - 0.18	0.22	18.0
22753	0DS-100Z, 100 Å	2.0	25.0	5	≥ 18,000			18.0
22754	0DS-100Z, 100 Å	3.0	2.0	5	≥ 1,200			9.0
22755	0DS-100Z, 100 Å	3.0	3.5	5	≥ 3,000			9.0
22756	0DS-100Z, 100 Å	3.0	5.0	5	≥ 4,000			12.0
22757	0DS-100Z, 100 Å	3.0	7.5	5	≥ 6,000			18.0
22758	0DS-100Z, 100 Å	3.0	10.0	5	≥ 8,500			18.0
22759	0DS-100Z, 100 Å	3.0	15.0	5	≥ 13,000			18.0
22760	0DS-100Z, 100 Å	3.0	25.0	5	≥ 21,000			18.0
22761	0DS-100Z, 100 Å	4.6	2.0	5	≥ 1,500			9.0
22762	0DS-100Z, 100 Å	4.6	3.5	5	≥ 3,000			9.0
22763	0DS-100Z, 100 Å	4.6	5.0	5	≥ 4,500			12.0
22764	0DS-100Z, 100 Å	4.6	7.5	5	≥ 7,000			18.0
22765	0DS-100Z, 100 Å	4.6	10.0	5	≥ 9,000			18.0
21461	0DS-100Z, 100 Å	4.6	15.0	5	≥ 14,000	0.7 - 1.0	1.2	18.0
21462	ODS-100Z, 100 Å	4.6	25.0	5	≥ 23,000	0.7 - 1.0	1.2	21.0
	Guard column products							
21997	ODS-100V Guardgel Cartridge, pk 3*	2.0	1.0	3		µm ODS-100V 2		
21453	ODS-100V Guard Cartridge, pk 3*	3.2	1.5	5		DS-100V 4.6 mm		
21841	ODS-100V Guard Cartridge, pk 3*	2.0	1.0	5		µm ODS-100V 2		
21454	ODS-100Z Guard Cartridge, pk 3*	3.2	1.5	5		DS-100Z 4.6 mm		
21996	ODS-100Z Guardgel Cartridge, pk 3*	2.0	1.0	3		µm ODS-100Z 2		columns
2100E	ODC 1007 Cuerdael Certridae pl 2*	2.0	1.0	E	East all E		V 0	a a luuma ma

*needs cartridge holder

21995

ODS-100Z Guardgel Cartridge, pk 3*

NOTE: Tosoh Bioscience offers guard columns and guard cartridges to protect your analytical column. Guard cartridges are usually delivered in packages of three and require the appropriate cartridge holder. In general cartridges for 4.6 mm ID columns are produced in 3.2 mm ID and 1.5 cm length. They require the cartridge holder 19018. Guard cartridges for 2 mm ID columns are 2 mm ID x 1 cm L and require holder 19308.

5

2.0

1.0

For all 5 μm ODS-100Z 2 & 3 mm ID columns

RPC

FAST RP COLUMNS TSKgel ODS-140HTP HIGHLIGHTS

- Moderate pressure at high flow rates
- High resolution and high efficiency
- High throughput applications
- Compatible with HPLC and UPLC systems

Column Backpressure versus Particle Size

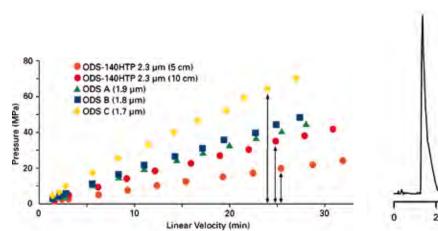

Moderate carbon content

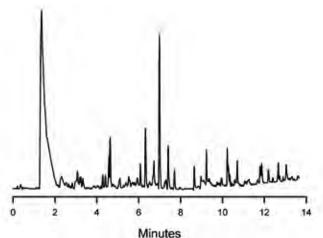
FIGURE 6 🚍

=

- Polylayer bonding chemistry

TSKgel ODS-140HTP columns were developed for use in high throughput applications, including drug discovery, pharmacokinetics and peptide digest separations. They are packed with 2.3 µm particles, providing high resolution and short analysis times at moderate pressure. The lower pressure drop reduces the burden on the hardware, allowing TSKgel ODS-140 HTP columns to be used with either UHPLC or conventional HPLC systems. The backpressure of this columns is less than half of the pressure of a sub-2 μ m column of the same dimensions (FIGURE 6).

Column: TSKgel ODS-140HTP 2.3 µm (2.0 mm ID x 5.0 cm, 10 cm L) Sub-2 µm ODS columns (2.1 mm ID x 5.0 cm L); Eluent: H,O/CH,CN - 50/50


APPLICATIONS

In Vietnamese and Chinese traditional medicine, hot aqueous extract of Crinum latifolium is used because of its antitumor activity. Crinum latifolium is thought to possess antiviral and immunostimulative properties and shows immunomodulatory properties in human peripheral blood mononuclear cells. The analysis of products derived from plant extracts is a challenging chromatographic task. Due to the high number ob components the column needs to provide a high peak capacity, as shown in **FIGURE 7**.

FIGURE 7 Analysis of Crinum Latifolium

=

Column: TSKgel ODS-140HTP 2.3 µm, 2.1 mm ID x 10 cm L; Sample: Crinum latifolium L extract, 2 µl; Eluent: A: water, B: acetonitrile; Gradient: 0 min (5% B), 1.2 min (5 % B), 4 min (30 % B), 15 min (68 % B), 15.1 min (100 % B), 20min (100% B); Flow rate: 0.4 mL/min; Temp.: 40°C; Detection: UV@220 nm; Sampling rate: 80 Hz

ORDERI	ING INFORMATION						
Part #	Description	ID (mm)	Length (cm)	Particle size (µm)	Pore size (Å)	Number theoretical plates	Maximum pressure drop (MPa)
TSKgel Stainl	less steel columns						
21927	TSKgel ODS-140HTP	2.1	5.0	2.3	140	≥ 7,000	60.0
21928	TSKgel ODS-140HTP	2.1	10.0	2.3	140	≥ 14,000	60.0

FAST RP COLUMNS TSKgel SUPER-ODS / SUPER-OCTYL / SUPER PHENYL

HIGHLIGHTS

PC

- The silica particles used in Super series columns are monodisperse spherical 2.3 µm beads with 110 Å pores
- TSKgel Super-ODS, Super-Octyl and Super-Phenyl packings are bonded with, respectively, C18, C8 and phenyl functional groups. The bonded phases have a polymeric structure. An exhaustive endcapping reaction minimizes the presence of residual silanol groups
- \sim 2 µm particles provide superior resolution and speed, as well as improved sensitivity
- Pressure drop is not excessive due to the monodisperse particle size distribution

APPLICATIONS

TSKgel SUPER-ODS, SUPER-OCTYL, SUPER-PHENYL

Recommended for small molecular weight compounds (<10,000 Da) such as peptides, amino acids, tryptic digests, nucleotides, pharmaceutical molecules, and food and beverage samples.

OPTIMIZING RESULTS WITH FAST RP COLUMNS

Super series columns can be used on a regular HPLC system if the dead volume is minimized, although optimal results are obtained with an UHPLC system.

The following recommendations are for 4.6 mm ID columns. Use proportionately lower values for 2 mm ID columns.

- 1. A guard filter is highly recommended to reduce particulate contamination from the sample or system components.
- 2. Keep sample volume less than 10 µL.
- 3. To ensure minimal extra-column volume, keep tubing as short as possible (extra-column volume less than 5 µL between column and detector).
- Conventional 0.1 mm ID connecting tubing may be used 4. (0.005).
- 5. The smallest detector time constant should be selected (if possible, less than 50 ms).
- The detector flow cell should be 2 μ L or less for best results. A 6. standard HPLC flow cell (10 µL) can be used as an alternative, however, it is recommended that the heating coil is removed.

OR	DERING INFORMATION							
Part #	Description	ID (mm)	Length (cm)	Particle size (µm)	Number theoretical	<u>Flow rate (</u> Range	(<u>mL/min)</u> Max.	Maximum pressure
		(11111)	(6111)	5120 (µ111)	plates	nanye	ινιαλ.	drop (MPa)
TSKgel	Stainless Steel Columns				,			,
20015	Super-ODS, 110 Å	1.0	5.0	2.3	≥ 15,000	0.03 - 0.05	0.06	15.0
19541	Super-ODS, 110 Å	2.0	5.0	2.3	≥ 6,000	0.15 - 0.2	0.25	25.0
19542	Super-ODS, 110 Å	2.0	10.0	2.3	≥ 12,000	0.15 - 0.2	0.25	25.0
18154	Super-ODS, 110 Å	4.6	5.0	2.3	≥ 8,000	1.0 - 2.5	4.0	30.0
18197	Super-ODS, 110 Å	4.6	10.0	2.3	≥ 16,000	1.0 - 2.5	4.0	30.0
20013	Super-Octyl, 110 Å	2.0	5.0	2.3	≥ 15,000	0.15 - 0.20	0.25	15.0
20014	Super-Octyl, 110 Å	2.0	10.0	2.3	≥ 1,500	0.15 - 0.20	0.25	30.0
18275	Super-Octyl, 110 Å	4.6	5.0	2.3	≥ 8,000	1.0 - 2.5	4.0	30.0
18276	Super-Octyl, 110 Å	4.6	10.0	2.3	≥ 16,000	1.0 - 2.5	4.0	30.0
20017	Super-Phenyl, 110 Å	2.0	5.0	2.3	≥ 3,000	0.15 - 0.20	0.25	8.0
20018	Super-Phenyl, 110 Å	2.0	10.0	2.3	≥ 6,000	0.15 - 0.20	0.25	15.0
18277	Super-Phenyl, 110 Å	4.6	5.0	2.3	≥ 8,000	1.0 - 2.5	4.0	30.0
18278	Super-Phenyl, 110 Å	4.6	10.0	2.3	≥ 16,000	1.0 - 2.5	4.0	30.0
Guard	column products							
19672	Guard cartridge, pk 3*	2.0	1.0	2.3	For 2 mm ID S	Super-ODS colu	umns	
19308	Cartridge holder				For P/N 19672	2		
18207	Guard filter, pk 3*	4.0	0.4		For 4.6 mm ID	columns (Sup	er-ODS, -Oc	tyl, -Phenyl)
18206	Guard filter holder				For P/N 18207	1		

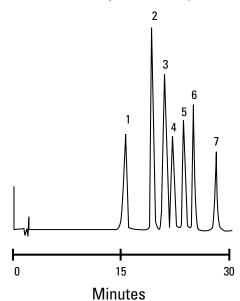
*needs cartridge holder

RP COLUMNS FOR BIOMOLECULES TSKgel OLIGODNA RP / TMS-250

HIGHLIGHTS

- TSKgel OligoDNA RP and TSKgel TMS-250 both incorporate spherical porous silica with 250 Å pores to allow unhindered access by large oligonucleotides and proteins respectively
- TSKgel OligoDNA RP contains a monomeric C18 bonded phase that is not endcapped
- TSKgel TMS-250 is exhaustively and repeatedly reacted with trimethyl silyl groups. Standard nomenclature designates the bonded phase as C1
- TSKgel OligoDNA RP is available in 4.6 mm ID and 7.8 mm ID (both 15 cm length), while TSKgel TMS-250 is only available in 4.6 mm ID x 7.5 cm L

APPLICATIONS TSKgel OLIGODNA RP


- Ideal for the purification and analysis of oligonucleotides (up to 500-mer), RNAs, and DNA fragments
- Possesses high-resolving power for octamers of similar sequence
- Proteins exhibit sharp peaks relative to wide pore C8 or C18 columns

TSKgel TMS-250

- Recommended for the analysis of proteins
 - The "wide-pore" TMS-250 packing can accommodate large proteins, such as aldolase (158,000 Da).

FIGURE 8 =

High Resolution Protein Separation on TSKgel TMS-250

Column: TSKgel TMS-250, 4.6 mm ID x 7.5 cm L;

Sample: 5 µg each of: 1. ribonuclease A, 2. cytochrome C, 3. lysozyme, 4. bovine serum albumin, 5. aldolase, 6. carbonic anhydrase, 7. ovalbumin; Elution: 60 min (TMS-250) linear gradient from 20% to 95% CH₂CN in 0.05% TFA, pH 2.2; Flow Rate: 0.61 mL/min; Detection: UV@220 nm

ORDERING INFORMATION

Part #	Description	ID (mm)	Length (cm)	Particle size (µm)	Number theoretical plates	<u>Flow rate</u> Range	(<u>mL/min)</u> Max.	Maximum pressure drop (MPa)
TSKgel	Stainless Steel Columns							
13352	OligoDNA RP, 250 Å	4.6	15.0	5	7,000	0.6 - 1.0	1.2	12.0
13353	OligoDNA RP, 250 Å	7.8	15.0	5	7,000	2.0 - 3.0	3.2	12.0
07190	TMS-250, 250 Å	4.6	7.5	10	1,500	0.5 - 0.8	1.0	2.0

POLYMER BASED RP COLUMNS TSKgel OCTADECYL-NPR / -2PW / -4PW/ -PHENYL-5PW RP

HIGHLIGHTS

RPC

- Polymer-based RPC columns are chemically stable at pH 2-12, allowing operation at basic pH where silica-based columns have limited chemical stability.
- Polymer-based columns can be cleaned and impurities removed by using either strong acid or base.
- Non-porous resins (NPR) or porous resins of various pore sizes available. Column selection is based on sample MW or application.
- 2.5 μm particle size TSKgel Octadecyl-NPR resin features fast kinetics resulting in high column efficiency and quantitative protein recovery at sub-microgram loads.
- TSKgel Octadecyl-2PW with 5 µm particle size and 125 Å pores size.
- TSKgel Octadecyl-4PW with 7 μm particle size and 500 Å pores size.

TSKgel Phenyl-5PW with 10 µm particle size and an average pore size of 1000 Å. In comparison with the Phenyl-5PW packing material

used in HIC, the greater level of hydrophobicity in TSKgel Phenyl-5PW RP makes this material more suitable for use in RPC.

APPLICATIONS TSKgel OCTADECYL-NPR

- High efficiency purification of proteins and peptides at submicrogram loads
- Stable to higher pressures than porous particles
- Improved recovery at low sample concentration over traditional porous resins

TSKgel OCTADECYL-2PW

- For analyzing small MW pharmaceutical compounds at basic pH
- Faster analysis than competitive polymeric RPC columns

TSKgel OCTADECYL-4PW

Recommended for peptides and small proteins

TSKgel PHENYL-5PW RP

- Ideal for the separation of proteins, including high MW
- Able to handle high loads (high capacity)

OR	DERING INFORMATION							
Part #	Description	ID (mm)	Length (cm)	Particle size (µm)	Number theoretical plates	<u>Flow rate</u> Range	(<u>mL/min)</u> Max.	Maximum pressure drop (MPa)
TSKgel	Stainless Steel Columns							
14005	Octadecyl-NPR nonporous	4.6	3.5	2.5	≥ 1,000	1.0 - 1.5	1.6	20.0
18754	Octadecyl-2PW, (100 - 200 Å)	2.0	15.0	5	≥ 5,000	0.07 - 0.11	0.14	7.0
17500	Octadecyl-2PW, (100 - 200 Å)	4.6	15.0	5	≥ 6,000	0.4 - 0.6	1.2	10.0
17501	Octadecyl-2PW, (100 - 200 Å)	6.0	15.0	5	≥ 6,000	0.5 - 1.0	1.5	10.0
18755	Octadecyl-4PW, 500 Å	2.0	15.0	7	≥ 2,000	0.08 - 0.17	0.22	10.0
13351	Octadecyl-4PW, 500 Å	4.6	15.0	7	≥ 2,000	0.5 - 1.0	1.2	12.0
16257	Octadecyl-4PW, 500 Å	21.5	15.0	13	≥ 2,000	3.0 - 6.0	8.0	3.5
18756	Phenyl-5PW RP, 1000 Å	2.0	7.5	10	≥ 400	0.05 - 0.1	0.12	1.0
)8043	Phenyl-5PW RP, 1000 Å	4.6	7.5	10	≥ 500	0.5 - 1.0	1.2	3.0
6260	Phenyl-5PW RP, 1000 Å	21.5	15.0	13	≥ 1,000	6.0 - 8.0	8.0	3.0
Glass o	columns							
4007	Phenyl-5PW RP Glass, 1000 Å	8.0	7.5	10	≥ 700	1.0 - 2.0		2.0
Guard (column products							
9007	Phenyl-5PW RP Cartridge, pk 3 *	3.2	1.5	10	For P/N 08043			
7502	Octadecyl-2PW Guard column	4.6	1.0	5	For P/N 17500			
7503	Octadecyl-2PW Guard column	6.0	1.0	5	For P/N 17501			
9008	Octadecyl-4PW Cartridge, pk 3*	3.2	1.5	7	For P/N 13351			
9308	Guard cartridge holder	2.0	1.0		For all 2 mm ID	cartridges		
9018 eeds cartr	Guard cartridge holder	3.2	1.5		For 4.6 mm ID	Octadecyl 4-P	W and Pheny	1-5PW RP columns

TRADITIONAL RP COLUMNS TSKgel ODS-80Ts / ODS-80Tm / OCTYL-80Ts / CN-80Ts

HIGHLIGHTS

- ODS-80 is prepared from spherical silica with 80 Å pores
- Monomeric-bonded phase chemistry for optimal lot-to-lot reproducibility
- High (80TM) or complete (80Ts) endcapping shields the silica surface from participating in solute retention through ionic interaction
- Particles contain 80 Å pores for fast mass transfer of solutes in the 100 to 6,000 Da MW range
- Available in particle sizes of 5 μm, 10 μm, and 20 μm
- Large surface area and high sample capacity

APPLICATIONS TSKgel ODS-80TM

- Hydrophobic and hydrophilic peptides, synthetic peptides, purity check, peptide mapping
- General purpose column for low MW pharmaceuticals, basic compounds, nucleosides, nucleotides, purines and pyrimidines

TSKgel ODS-80Ts

 Complete endcapping makes the TSKgel ODS-80TS a good choice for strongly basic compounds and for applications that require operation at pH 7.5

TSKgel Octyl-80Ts

- Faster kinetics than ODS, but lower hydrophobic selectivity
- Lower hydrophobic selectivity of Octyl versus ODS

TSKgel CN-80Ts

- > Alternative to ODS and Octyl columns for analysis of polar compounds
- Solvent strength should be reduced to obtain similar retention to Octyl and ODS columns when separating non-polar compounds

TRADITIONAL RP COLUMNS TSKgel ODS-120A - TSKgel ODS-120T

HIGHLIGHTS -----

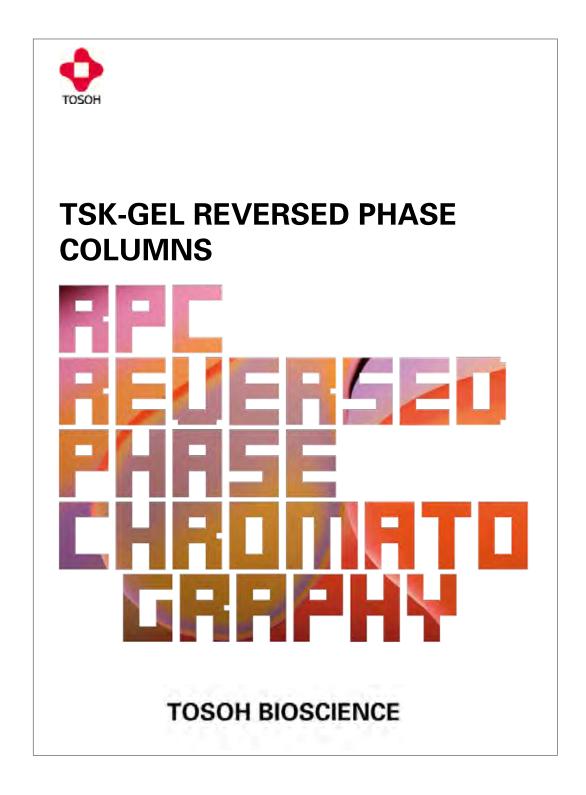
- TSKgel ODS-120 contains polymeric-bonded octadecyl groups on 120Å pore size silica
- TSKgel ODS-120A is not endcapped; TSKgel ODS-120T is endcapped with trimethylsilyl groups
- TSKgel 120T columns are available in 2 mm ID format
- Available in 5 μm and 10 μm particle sizes in analytical and semipreparative columns respectively. Larger particle sizes are available in preparative columns
- Hardware: stainless steel columns for analytical, semi-preparative, and preparative separations

APPLICATIONS -----

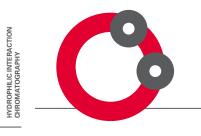
TSKgel ODS-120A

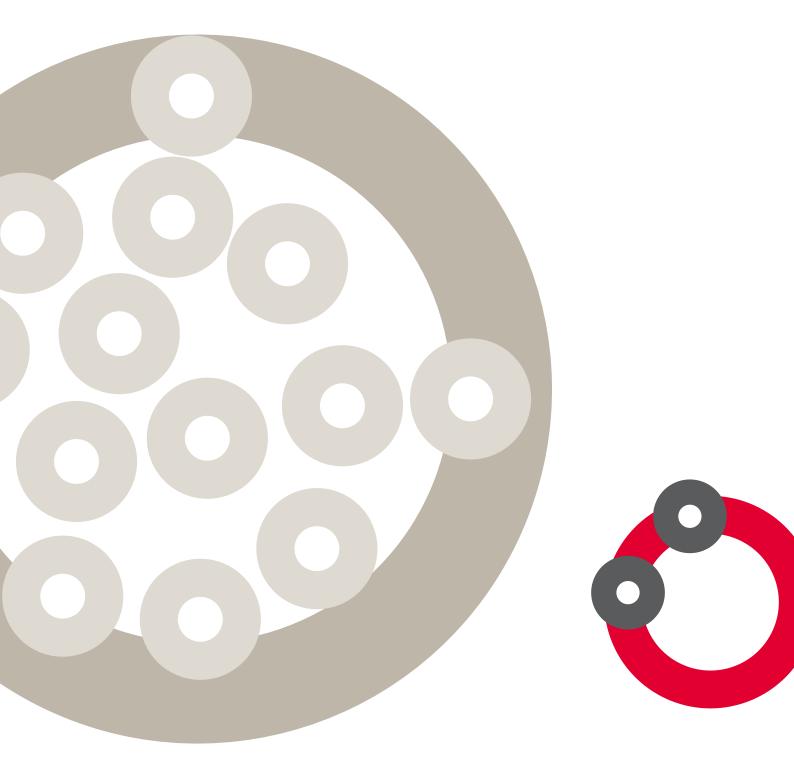
- Polymeric bonded ODS exhibits improved peak shape for the separation of complex geometric isomers, such as polynuclear aromatic hydrocarbons (PAH)
- TSKgel ODS-120A and 120T provide a similar separation at low pH for a mixture of catecholamines, while at pH 6 the basic solutes interact with negatively charged silanol groups on 120A, but not on 120T

TSKgel ODS-120T


 Endcapped ODS-120T is an alternative to ODS-80TM for peptide and protein separations RPC

18


ORDERING INFORMATION


Part #	Description	ID (mm)	Length (cm)	Particle size (µm)	Number theoretical plates	<u>Flow rate (</u> Range	(<u>mL/min)</u> Max.	Maximum pressure drop (MPa)
	Stainless Steel Columns							
18150	ODS-80Ts, 80 Å	2.0	15.0	5	≥ 11,000	0.15 - 0.18	0.22	20.0
18151	ODS-80Ts, 80 Å	2.0	25.0	5	≥ 18,000	0.15 - 0.18	0.22	30.0
17200	ODS-80Ts, 80 Å	4.6	7.5	5	≥ 4,500	0.8 - 1.0	1.2	10.0
17201	ODS-80Ts, 80 Å	4.6	15.0	5	≥ 11,000	0.8 - 1.0	1.2	20.0
17202	ODS-80Ts, 80 Å	4.6	25.0	5	≥ 18,000	0.8 - 1.0	1.2	30.0
17380	ODS-80Ts, 80 Å	21.5	30.0	10	≥ 6,000	4.0 - 6.0	12.0	6.0
16651	ODS-80Тм, 80 Å	4.6	7.5	5	≥ 4,500	0.8 - 1.0	1.2	10.0
08148	ODS-80Тм, 80 Å	4.6	15.0	5	≥ 11,000	0.8 - 1.0	1.2	20.0
08149	ODS-80Тм, 80 Å	4.6	25.0	5	≥ 18,000	0.8 - 1.0	1.2	30.0
14002	ODS-80Tm, 80 Å	21.5	30.0	10	≥ 6,000	4.0 - 6.0	12.0	6.0
17344	Octyl-80Ts, 80 Å	4.6	15.0	5	≥ 11,000	0.8 - 1.0	1.2	20.0
17345	Octyl-80Ts, 80 Å	4.6	25.0	5	≥ 18,000	0.8 - 1.0	1.2	30.0
17348	CN-80Ts, 80 Å	4.6	15.0	5	≥ 11,000	0.8 - 1.0	1.2	20.0
17349	CN-80Ts, 80 Å	4.6	25.0	5	≥ 18,000	0.8 - 1.0	1.2	30.0
Guard o	column products							
19325	ODS-80Ts Guard cartridge, pk 3 *	2.0	1.0	5	For all 2 mm ID	0 ODS-80Ts / OD	S-120T colum	ins
19011	ODS-80Ts Guard cartridge, pk 3 *	3.2	1.5	5	For all 4.6 mm	ID ODS-80Ts co	lumns	
19012	Octyl-80Ts Guard cartridge, pk 3 *	3.2	1.5	5	For all 4.6 mm	ID ODS-80Ts co	lumns	
17385	ODS-80Ts Guard column	21.5	7.5	10	For P/N 17380			
14098	ODS-80Tм Guard column	21.5	7.5	10	For P/N 14002			
19004	ODS-80Tm Guard cartridge, pk 3 *	3.2	1.5	5	For 4.6 mm ID	ODS-80Tм colur	nns	
19013	CN-80Ts Guard cartridge, pk 3 *	3.2	1.5	5	For 4.6 mm ID	CN-80Ts columr	ıs	
TSKgel	Stainless steel columns							
07636	ODS-120A, 120 Å	4.6	15.0	5	≥ 7,000	0.8 - 1.0	1.2	15.0
07124	ODS-120A, 120 Å	4.6	25.0	5	≥ 10,000	0.8 - 1.0	1.2	20.0
07129	ODS-120A, 120 Å	7.8	30.0	10	≥ 6,000	1.0 - 2.0	3.0	7.5
06172	ODS-120A, 120 Å	21.5	30.0	10	≥ 6,000	4.0 - 6.0	12.0	6.0
18152	ODS-120T, 120 Å	2.0	15.0	5	≥ 6,500	0.15 - 0.18	0.22	15.0
18153	ODS-120T, 120 Å	2.0	25.0	5	≥ 10,000	0.15 - 0.18	0.22	20.0
07637	ODS-120T, 120 Å	4.6	15.0	5	≥ 7,000	0.8 - 1.0	1.2	15.0
07125	ODS-120T, 120 Å	4.6	25.0	5	≥ 10,000	0.8 - 1.0	1.2	20.0
07130	ODS-120T, 120 Å	7.8	30.0	10	≥ 6,000	1.0 - 2.0	3.0	7.5
07134	ODS-120T, 120 Å	21.5	30.0	10	≥ 6,000	3.0 - 6.0	12.0	6.0
Guard o	column products							
19006	ODS-120T Guard cartridge, pk 3 *	3.2	1.5	5	For all 2 mm ID	ODS-120T colu	imns	
19005	ODS-120A Guard cartridge, pk 3*	3.2	1.5	5	For 4.6 mm ID	ODS-120T colun	nns	
19018	Guard cartridge holder	3.2	1.5		For 3.2 mm ID	cartridges		
19308	Guard cartridge holder	2.0	1.5		For all 2 mm IC	Guard columns	\$	

For more information about our RPC columns, please request our RPC brochure

HILIC HYDROPHILIC INTERACTION CHROMATOGRAPHY

HILIC PRODUCTS

SILICA BASED HILIC COLUMNS

TSKgel Amide-80 TSKgel NH2-100

> **TOSOH FACT** The first columns used in chromatography were glass, both for liquid-solid chromatography by Tswett in his separation of plant pigments and by James and Martin in their first gas chromatograph. However, as the technique developed and particle size was reduced, the length of the columns in liquid chromatography was decreased. This resulted in the columns having to be operated at higher pressures. To accommodate these higher pressures, stainless steel columns were introduced. Tosoh introduced its first HPLC (GPC) columns in 1971, which were composed of stainless steel. Recently, columns packed in PEEK, a biocompatable fluorocarbon polymer, became available. PEEK can withstand the pressures commonly encountered in HPLC.

21

INTRODUCTION TO TSKgel HILIC COLUMNS

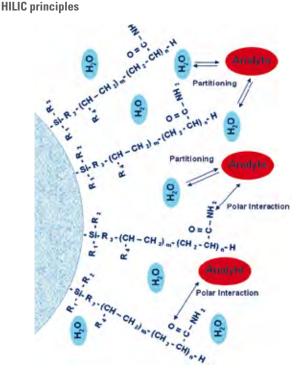
HIGHLIGHTS

- Stable bonding chemistries
- Unique polar phases
- Handle a wide spectrum of sample polarities
- Stable in 100% organic
- Separate many different types of polar molecules
- 3 μm particle size for LC/MS analysis

Hydrophilic interaction chromatography (HILIC) is used primarily for the separation of polar and hydrophilic compounds. HILIC has similarities with traditional normal phase chromatography, but the mobile phases for HILIC are similar to those known from reversed phase chromatography (RPC). They include polar organic solvents like acetonitrile. Based on hydrogen bonds the aqueous content of the mobile phase creates a water-rich layer on the particle surface. This allows for partitioning of polar compounds between the more organic mobile phase and the aqueous layer (FIGURE 1). The number of polar groups, as well as the conformation and solubility of the sample in the mobile phase determines the elution order.

Typical mobile phases consist of acetonitrile buffer mixtures. Samples are eluted from the column by increasing the percentage of the aqueous component. Compared to RPC the elution order in HILIC mode is inversed for most substances.

HILIC is often used to separate hydrophilic compounds such as peptides, carbohydrates and small polar drug candidates or metabolites. Hydrophilic compounds are retained on the polar bonded phase column while non-polar sample impurities elute unretained in the void volume. In addition it is ideally suited for sensitive LC-MS analysis of water soluble polar compounds because the high organic content in the mobile phase provides rapid evaporation of solvent during electrospray ionization.


TSKgel HILIC columns are available in various dimensions and particle sizes, functionalized with carbamoyl-groups (TSKgel Amide-80) or amino-groups (TSKgel NH2-100). This enables the user to perfectly match HILIC selectivity to specific application needs.

The TSKgel Amide-80 column offers an excellent alternative to aminobonded stationary phases and consists of 3, 5 or 10 µm silica particles in a stainless steel format. Spherical silica particles are covalently bonded with carbamoyl groups. For years TSKgel Amide-80 columns have been the standard for the analysis of glycans. TSKgel Amide-80 columns packed with 3 µm particles are the newest addition to the TSKgel Amide-80 series. The 3 µm HILIC columns reduce analysis time and improve peak capacity and sensitivity for HPLC and LC-MS analysis.

TSKgel NH2-100 3 µm columns are the latest addition to the TSKgel HILIC family. They expand the selectivity range of TSKgel HILIC solutions by a new, robust amino-phase. In contrast to conventional silica-based amino phases the new column offers expanded stability under HILIC conditions. It is well suited for the analysis of all types of hydrophilic compounds like carbohydrates, peptides, vitamins, polar drugs or metabolites.

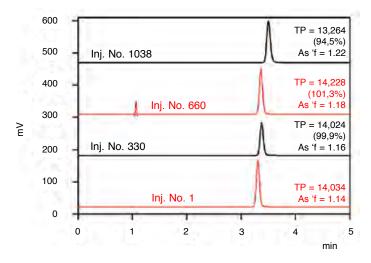
The NH2-100 phase is based on a silica particle with 3 μ m particle and 100 Å pore size, treated with a special endcapping procedure. Amino groups are introduced step wisely after endcapping. These columns are unique in that the bonded phase ligand not only, as expected, has a terminal primary amino group, but that the spacer also incorporates secondary as well as tertiary amino groups. The amino groups act as HILIC functional groups without any peak splits. Due to their high ligand density and large surface area TSKgel NH2-100 3 μ m columns show high retention for very polar compounds. Anionic compounds are retained on the column by ionic interaction. This allows for the use of salt gradients, in addition to gradient elutions with acetonitrile. Since the TSKgel NH2-100 has cationic sites, it can be used as mixed mode phase under some conditions.

FIGURE 1

23

COLUMN OPERATION AND SPECIFICATIONS

TSKgel HILIC columns can be operated over a broad range of mobile phase conditions. Factors to consider when employing these columns include:

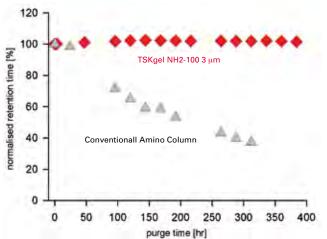

Sample Loading Capacity is dependent upon the polarity of the mobile phase. It increases with decreasing mobile phase polarity. For example, on a TSKgel Amide-80 column the highest loading capacity for mannitol (200 μ g) occurs with a mobile phase of 75:25 acetonitrile/water. However, <100 μ g of mannitol can be loaded in a mobile phase of 65:35 acetonitrile/water. The maximum sample volume for a 4.6 mm ID x 25 cm L Amide-80 analytical column is 50 μ L.

Temperature Range: TSKgel Amide-80 columns can be operated over a temperature range of 4-80°C (4-40°C for Amide-80 3µm), TSKgel NH2-100 columns in the range of 10-50 °C. In general, retention times for carbohydrates decrease with increasing temperature, thereby shortening analysis time. Below certain temperatures some carbohydrates may elute as split peaks. In this case, column heating or addition of triethylamine to the mobile phase is required.

Choice of Mobile Phase: the pH range of TSKgel Amide-80 and NH2-100 columns is 2.0-7.5 with a maximum salt concentration of 100 mmol/L. The columns are stable in 100% organic for normal phase separations; however, in HILIC mode a combination of aqueous and organic solvents is necessary in order to create the water-rich surface layer. As the mobile phase polarity decreases (higher organic content) the sample is retained longer on the column.

FIGURE 2 _____

Durability of TSKgel Amide-80 3 µm


Column: TSKgel Amide-80 3 μ m (2.0 mm ID x 15 cm L) Eluent : H₂O/ACN = 15/85; Flow rate: 0.2 mL/min; Inj. volume: 2 μ L Detection : UV@254 nm; Temp. : 25 °C; Samples: Uracil (37 mg/L)

LONG TERM STABILITY

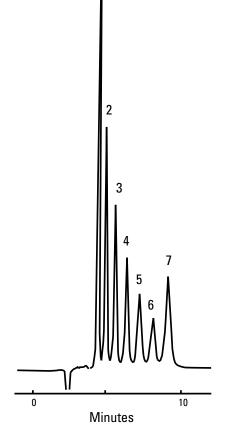
The high stability of TSKgel Amide-80 columns is demonstrated in FIGURE 2 showing the same analysis after 330, 660 and more than 1000 runs compared to the first injection. Only 5% reduction of column performance (theoretical plates) is observed after more than 1000 injections.

FIGURE 3 shows the high stability of TSKgel NH2-100 columns. Compared to the first injection only a slight reduction of retention time of inositol is observed with the TSKgel NH2-100 column after more than 400 hours of flushing with mobile phase.

FIGURE 3 Long term stability of TSKgel NH2-100 columns

Column: TSKgel NH2-100 3 μ m, 4.6 mm ID x 15 cm L Conventional Amino Column, 4.6 mm ID x 25 cm L; Eluent: H₂O/ACN (25/75); Flow rate: 1.0 mL/min; Detect: RI; Temp.: 40 °C; Injection: 10 μ L; Sample: Inositol

APPLICATIONS OF TSKgel AMIDE-80 COLUMNS


OLIGOSACCHARIDES

The TSKgel Amide-80 can separate oligosaccharides very rapidly and efficiently. FIGURE 4 shows a separation of a ß-cyclodextrin hydrolysate in less than 10 minutes. The labels indicate the number of base sugars such as glucose in each oligomer.

GLYCANS

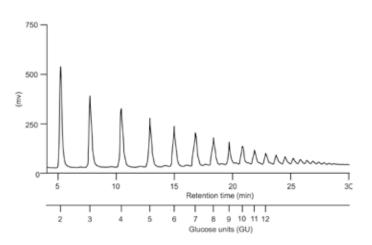

Glycosylation is one of the most common post-translational modifications in eukaryotic cells. Complex N- and O-linked structures composed of repeating sugar moieties form the so called glycans. HILIC with fluorescence detection is the method of choice to effectively separate, identify and quantify glycans after exoglycosidase cleavage and fluorescent labeling. In order to normalize retention times of complex glycan structures a dextran ladder consisting of glucose oligomers is used as calibration reference. The calculated numbers of glucose units (GU) can be used in subsequent database queries (Glycobase, autoGU) to predict the glycan structure. For years TSKgel Amide-80 columns have been used successfully in glycan analysis. Amide-80 chemistry is ideally suited for the separation of carbohydrate structures. FIGURE 5 shows the high-resolution separation of a 2-aminobenzamide (2AB) labeled dextran ladder within 30 minutes on a TSKgel Amide-80 3 µm column. This ladder can be used as a calibration standard for HPLC and MS analysis of glycans. The ladder contains glucose homopolymer species from degree of polymerization (dp) 1 to dp 22 (i.e. the glucose monomer GU1-2AB to GU22-2AB).

FIGURE 4 Separation of B-cyclodextrin hydrolysate on TSKgel Amide-80 column

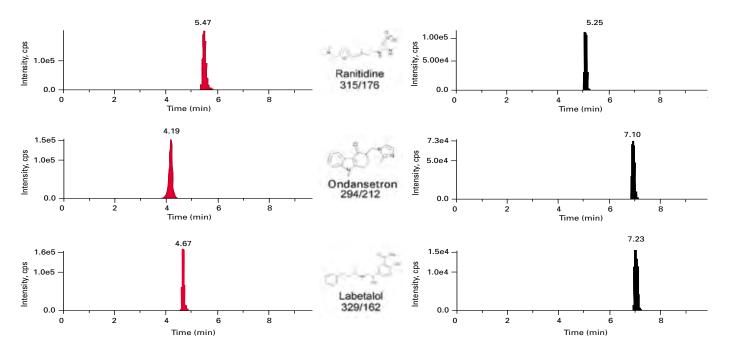
Column: TSKgel Amide-80 (4.6 mm ID x 25 cm L); Sample: 2 μL, β-cyclodextrin hydrolysate, 1 - 7 degrees of polymerization (4.6 mg/mL); Elution: ACN/water (55/45); Flow Rate: 1.0 mL/min; Detection: RI; Temperature: 25 °C

FIGURE 5 = Separation of a 2-AB-labeled Dextran Ladder on TSKgel Amide-80

Column: TSKgel Amide-80 (3 µm, 2.0 mm ID × 15 cm L) Eluent: A) 50 mM Ammonium formate (pH 4.3), B) Acetonitrile; Gradient: 0 - 35 min (75 - 35 % B); Flow-rate: 0.22 mL/min; Detection: Fluorescence Ex @ 360 nm, Em @ 425 nm; Temperature: 50 °C; Injection vol: 3 µl; Sample: CAB-GHP dextran ladder (Ludger; ~300 fmol for GU2)

* Courtesy of K. Darsow & H. Lange, Institute of Bioprocessing, University of Nürnberg/Erlangen

=


HILIC

High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has become a powerful tool when detection sensitivity is an issue. HILIC offers unique advantages for MS detection of very polar compounds when compared to reversed phase mode. The higher organic content of the eluent in HILIC mode supports efficient evaporation of the solvent thus enhancing sensitivity and altering ion suppression.

HILIC separations are performed with gradients starting with high percentage of organic solvent and ending with a high portion of aqueous solvent - opposite to typical reversed phase gradients. The elution order of compounds is usually inversed as well. As a result polar compounds are very well separated according to increased polarity in HILIC mode. At the same time the portion of organic solvent in the mobile phase is relatively high.

FIGURE 6 shows the analysis of basic drug substances using a TSKgel Amide-80 3 µm column compared to a reversed phase TSKgel ODS-100V 3 µm column. Ranitidine, a histamine H2 receptor antagonist, Ondansetron, an antiemetic serotonin receptor antagonist, and Labetalol, an alpha-1 and beta adrenergic blocker were selected to demonstrate the differences in selectivity and MS-signal response when applying different chromatographic modes.

Ranitidine has the highest number of polar groups among these molecules and as a result shows the highest retention in HILIC and the lowest retention in RPC mode. Signal intensity is almost doubled for Ranitidine in HILIC mode. For Labetalol a tenfold increase in signal height can be achieved by using HILIC instead of RPC.

FIGURE 6 LC-MS/MS Analysis of basic drugs in HILIC and RPC mode

Column: TSKgel Amide-80 3 µm (2.0 mm ID x 15 cm L) Eluent : A: 10 mM Ammoniumformiate (pH 3.75); B: ACN Gradient: 0 min (B 90%) -> 10 min (B 40%) ->13 min (B 40%) Flow rate: 0.2 mL/min; Inj. volume : 5 µL (50 µg/L) Detection : QTrap® LC-MS/MS (Applied Biosystems), ESI+ Column: TSKgel ODS-100V 3 µm (2.0 mm ID x 15 cm L) Eluent: A: 10 mM Ammoniumformiate (pH 3.75); B: ACN Gradient: 0 min (B 0%) -> 10 min (B 80%) ->13 min (B 80%) Flow rate: 0.2 mL/min; Inj. volume: 5 µL (50 µg/L) Detection: QTrap® LC-MS/MS (Applied Biosystems), ESI+

APPLICATIONS OF TSKgel NH2-100 COLUMNS

SEPARATION OF WATER SOLUBLE VITAMINS

FIGURE 7 shows the separation of a standard solution of water soluble vitamins on a TSKgel NH2-100 column compared to a TSKgel Amide-80 column. Dimension (4.6 mm ID x 15 cm L), particle size (3 μ m), flow rate and mobile phase were identical for both columns. The elution order of the compounds changes when applying the same mobile phase to both columns: The TSKgel NH2-100 column shows stronger retention for nicotinic acid, vitamin C, and vitamin B12, while retention of vitamin B1, B2, and pyridoxine is reduced.

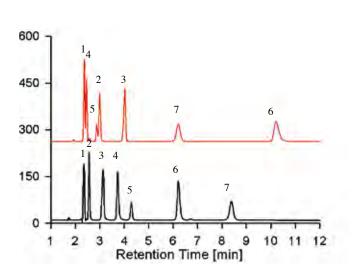
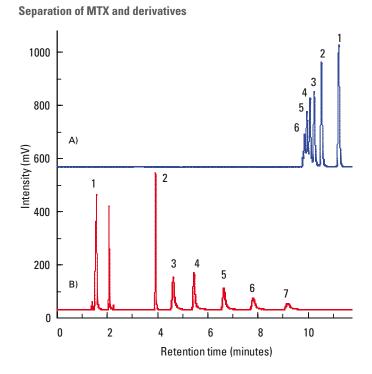

SEPARATION OF METHOTREXATE AND DERIVATIVES

FIGURE 8

3

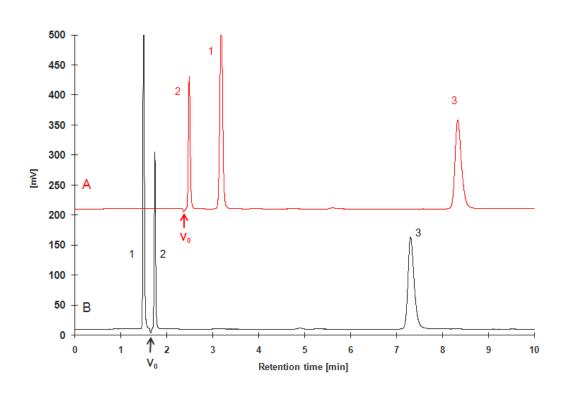

FIGURE 8 compares the separation of methotrexate and its derivatives (MTXPG2~7) on TSKgel NH2-100, 3µm HILIC and TSKgel ODS-100V, 3µm reversed phase narrow bore columns. Methotrexate, abbreviated MTX and formerly known as amethopterin is an inhibitor of the folic acid metabolism. It is used in cancer chemotherapy and as a treatment of autoimmune diseases. The MTX and polyglutamate derivatives were eluted in the order of the number of glutamate groups in their molecules on the TSKgel NH2-100 HILIC column, but eluted in reverse order on the TSKgel ODS-100V column. Despite the early elution of MTX and MTXPG2 on the TSKgel NH2-100 HILIC column, the overall separation is better than what can be accomplished on the C18 column.

Columns: TSKgel Amide-80 3 μm, 4.6 mm ID x 15 cm L; TSKgel NH2-100 3 μm, 4.6 mm ID x 15 cm L; Eluent: 25 mM phosphate buffer (pH 2.5)/ACN=30/70 Flow: 1 mL/min; Temp.: 40°C; Detection: UV@254 nm Sample: Vitamin standard mixture: 1 = Nicotinamide, 2 = Vitamin B2, 3 =

Pyridoxine, 4 = Nicotinic acid, 5 = Vitamin C, 6 = Vitamin B1, 7 = Vitamin B12 Injection: 5 μ L

Column: A) TSKgel ODS-100V, 3 μ m, 2.0 mm ID x 15 cm L; Mobile phase: a) H₂O/ACN (90/10) + 0.1% TFA, b) ACN + 0.1% TFA; B) TSKgel NH2-100, 3 μ m, 2.0 mm ID x 15 cm L;

Mobile phase: a) H_2O/ACN (10/90) + 0.1% TFA, b) H_2O + 0.1% TFA; Gradient: 0 % B (0 min), 40 % B (15 min), 0 % B (17 min);


Flow rate: 0.20 mL/min; Detection: UV@313 nm; Temperature: 40°C; Injection vol.: 10 μL; Sample: 1. MTX (MTXPG) 2. MTXPG2 3. MTXPG3 4. MTXPG4 5. MTXPG5 6. MTXPG6 7. MTXPG7

HILIC

DIRECT CONNECTION HILIC COLUMN FOR DEDICATED APPLICATIONS The TSKgel NH2-100 DC column connects directly to other TSKgel HPLC columns. This can be used to combine separations based on polar interactions and non-polar interactions e.g. HILIC/ion exchange and reversed phase without the need of connectors or capillaries. The DC in the name 'TSKgel NH2-100 DC' emphasizes this 'direct connect' aspect. A male-type outlet end fitting enables the direct connection to the normal end fitting of a TSKgel reversed phase column. This allows for the simultaneous gradient separation of hydrophobic and hydrophilic/acidic compounds - e.g. an active pharmaceutical ingredient (API) and its counter ion - without the loss of column efficiency normally experienced when connecting two columns with capillary tubing. Hydrophilic compounds and anions are retained strongly on the amino-alkyl bonded 3 µm silica phase of the TSKgel NH2-100 DC 3 µm column. When coupled to a reversed phase column the overall retention of these compounds is thereby shifted from other unretained peaks.

FIGURE 9 demonstrates the use of the TSKgel NH2-100 DC column in the separation of drug and counter ion. Maleic acid and p-toluene sulfonic acid are commonly used as counter ions in pharmaceutical preparations. Both of these organic acids are hydrophilic and are not retained on a TSKgel ODS-100V reversed phase column at pH 7.0 in 70 % methanol eluent (Chromatogram B). With the connection of a TSKgel NH2-100 DC column prior to the TSKgel ODS-100V column, the simultaneous determination of maleic acid and the active pharmaceutical ingredient (API) desipramine becomes possible (Chromatogram A). Maleic acid is slightly retained on the TSKgel NH2-100 DC column by an anion exchange interaction. Desipramine, on the other hand, does not interact with the protonated amino groups as it is positively charged.

Columns: A: TSKgel NH2-100 DC 3 µm + TSKgel ODS-100V 3 µm

B: TSKgel ODS-100V 3µm

Mobile phase: 50 mmol/L phosphate buffer, pH 7.0/MeOH (30/70); Flow rate: 1.0 mL/min; Detection: UV@210nm; Temperature: 40°C; Injection vol.: 5 µL; Samples: 1. maleic acid (50 mg/L); 2. p-toluene sulfonic acid (50 mg/L); 3. desipramine (50 mg/L)

≣

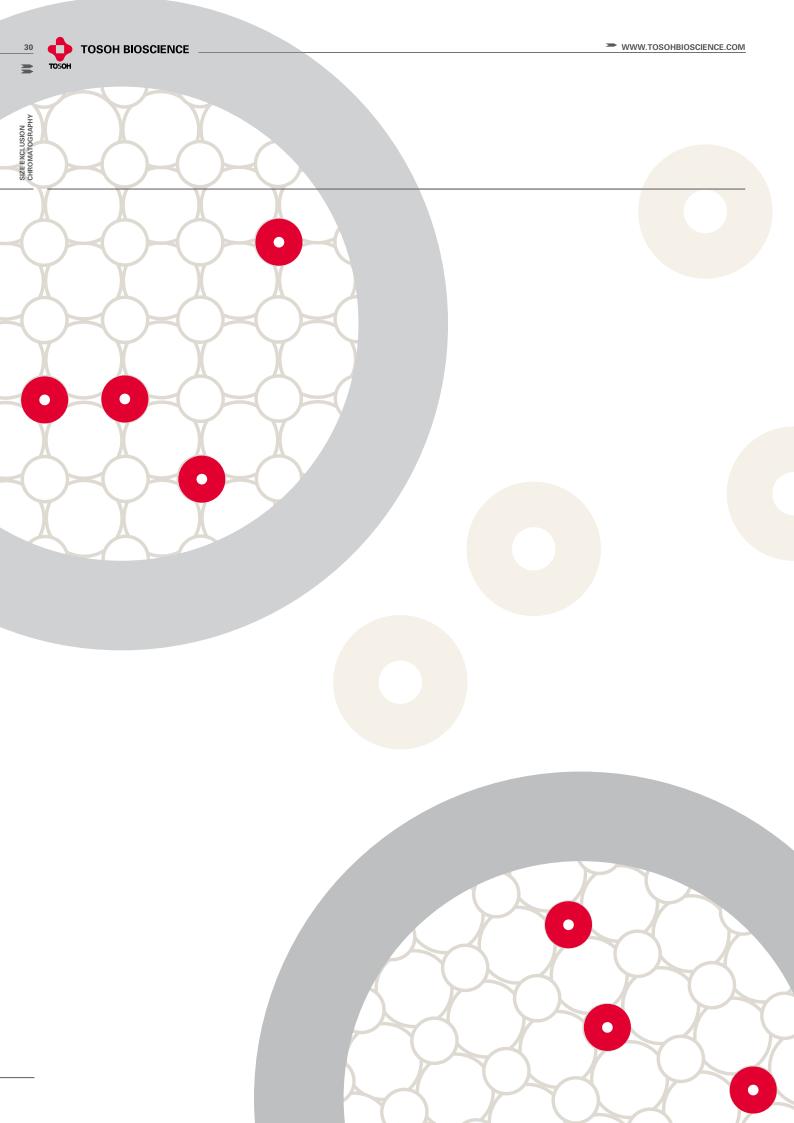
ORDERING INFORMATION

Part #	Description	ID	Length	Particle	Number		<u>e (mL/min)</u>	Maximum
		(mm)	(cm)	size (µm)	theoretical plates	Range	Max.	pressure drop (MPa)
TSKge	l Stainless Steel Columns				platoo			arop (iiii a)
21864	Amide-80	2.0	5.0	3	≥ 3,500			20.0
21865	Amide-80	2.0	15.0	3	≥ 13,000			20.0
21866	Amide-80	4.6	5.0	3	≥ 6,000			20.0
21867	Amide-80	4.6	15.0	3	≥ 18,500			20.0
20009	Amide-80	1.0	5.0	5	≥ 300	0.03 - 0.05	0.06	3.0
20010	Amide-80	1.0	10.0	5	≥ 600	0.03 - 0.05	0.06	6.0
21486	Amide-80	1.0	15.0	5	≥ 4,000	0.03 - 0.05	0.06	9.0
21487	Amide-80	1.0	25.0	5	≥ 6,000	0.03 - 0.05	0.06	12.0
19694	Amide-80	2.0	5.0	5	≥ 1,000	0.15 - 0.20	0.25	4.0
19695	Amide-80	2.0	10.0	5	≥ 2,000	0.15 - 0.20	0.25	8.0
19696	Amide-80	2.0	15.0	5	≥ 4,000	0.15 - 0.20	0.25	10.0
19697	Amide-80	2.0	25.0	5	≥ 6,000	0.15 - 0.20	0.25	15.0
19532	Amide-80	4.6	5.0	5	≥ 2,500	0.8 - 1.0	1.2	5.0
19533	Amide-80	4.6	10.0	5	≥ 4,000	0.8 - 1.0	1.2	5.0
13071	Amide-80	4.6	25.0	5	≥ 8,000	0.8 - 1.0	1.2	15.0
14459	Amide-80	7.8	30.0	10	≥ 5,000	1.0 - 2.0	3.0	7.0
14460	Amide-80	21.5	30.0	10	≥ 8,000	4.0 - 6.0	8.0	3.0
21967	NH2-100 -NEW-	2.0	5.0	3	≥ 4,000			15.0
21968	NH2-100 -NEW-	2.0	15.0	3	≥15,000			20.0
21969	NH2-100 -NEW-	4.6	5.0	3	≥ 6,000			5.0
21970	NH2-100 -NEW-	4.6	15.0	3	≥18,000			15.0
21999	NH2-100 DC -NEW-	4.6	5.0	3	≥ 6,000			5.0
Guard	column products							
21862	Amide-80 Guard cartridge, pk 3	2.0	1.0	3	For 2.0 mm ID	columns		
21863	Amide-80 Guard cartridge, pk 3	3.2	1.5	3	For 4.6 mm ID	columns		
21941	Amide-80 Guard cartridge, pk 3	2.0	1.0	5	For all 2 mm ID) columns		
19021	Amide-80 Guard column	4.6	1.0	5	For all 4.6 mm	ID columns		
19010	Amide-80 Guard cartridge, pk 3	3.2	1.5	5	For all 4.6 mm	ID columns		
14461	Amide-80 Guard column	21.5	7.5	10	For 21.5 mm ID) column		
19308	Amide-80 Guard cartridge holder				For 2 mm ID x	1 cm L guard ca	rtridges	
19018	Amide-80 Guard cartridge holder				For 3.2 mm ID	x 1.5 cm L guard	cartridges	
21971	NH2-100 Guard cartridge, pk 3 -NEW-	2.0	1.0		For all 2 mm ID) columns		
21972	NH2-100 Guard cartridge, pk 3 -NEW-	3.2	1.5		For all 4.6 mm	ID columns		

NOTE: Tosoh Bioscience offers guard columns and guard cartridges to protect your analytical column. Guard cartridges are usually delivered in packages of three and require the appropriate cartridge holder. In general cartridges for 4.6 mm ID columns are produced in 3.2 mm ID and 1.5 cm length. They require the cartridge holder 19018. Guard cartridges for 2 mm ID columns are 2 mm ID x 1 cm L and require holder 19308.

DISCOVER TSKgel HILIC SOLUTIONS FOR HPLC

TSKgel AMIDE-80 - NO.1 FOR GLYCO-MAPPING
 SMALL PARTICLE SIZES FOR HIGH EFFICIENCY


TSKgel NH2-100 - ROBUST AMINO BONDED PHASE
 VIRTUAL ABSENCE OF BLEEDING, IDEAL FOR MS

THE TSKgel HILIC PORTFOLIO IS A SELECTION OF STABLE, SILICA BASED HILIC PHASES SUITED FOR A VARIETY OF APPLICATIONS. VISIT OUR WEBSITE OR TALK TO ONE OF OUR TECHNICAL SPECIALISTS AT HPLC JUNE 19-23,2011, BUDAPEST, BOOTH M18, TO LEARN HOW OUR PRODUCTS COULD SOLVE YOUR SEPARATION NEEDS.

TOSOH BIOSCIENCE

29

HILIC

SEC SIZE EXCLUSION CHROMATOGRAPHY

SEC PRODUCTS

TSKgel SW-type

TSKgel SW TSKgel SWx∟ TSKgel SuperSW

TSKgel PW-type

TSKgel PW TSKgel PWxL TSKgel PWxL-CP TSkgel SuperMultipore PW TSkgel SuperOligo PW

TSKgel Alpha-type

TSKgel Alpha TSKgel SuperAW TSKgel Vmpak

TSKgel H-type

TSKgel Hx∟ TSKgel HHR TSKgel SuperH TSKgel SuperHZ TSKgel MultiporeHZ

TOSOH FACT Tosoh has a long history in size exclusion chromatography (SEC). In 1978 Tosoh first introduced porous silica-based SW columns for the isolation of proteins using LC. These first gels had particle sizes from 10 to 13 µm and were quickly adopted and referred to as the standard for analytical SEC on FPLC and HPLC systems.

As new packing materials were discovered and new bonding chemistries developed, the SEC product line has grown into four major classes of SEC columns. The following pages will help you choose the best column for your application.

INTRODUCTION TO TSKgel SIZE EXCLUSION COLUMNS

GEL FILTRATION CHROMATOGRAPHY (GFC)

GFC is popular among biochemists for the isolation of proteins, for the removal of aggregates, to desalt a protein sample, to separate nucleic acid fractions, or to characterize water-soluble polymers used in food products, paints, pharmaceutical preparations, etc. Available TSKgel products are classified by application area and particle composition. Each of the types below is described in detail in this chapter.

Application Area: Proteins and other biopolymers

Base material: silica

- SW
- SW_{XL}
- SuperSW

These columns are ideal for proteins and nucleic acids using an aqueous buffer as mobile phase.

Application Area: Water-soluble polymers

Base material: polymethacrylate

- PW
- SuperMultiporePW
- SuperOligoPW
- PW_{XL}
- PWxL-CP

These columns are ideal for industrial polymers, oligosaccharides, nucleic acids and small viruses using aqueous buffer or salt solutions as mobile phase. The new TSKgel SuperMultiporePW semi-micro SEC columns provide near linear calibration curves and are ideally suited to analyze the MW distribution of water soluble polymers with a wide range of molecular weights. The SuperOligoPW semi-micro column featuring a small particle size has been designed for fast analysis of oligosaccharides and other oligomers. The PW_{xL}-CP columns are developed to facilitate SEC separation of cationic polymer under low salt conditions.

Application Area: Water- and organic-soluble polymers

Base material: highly crosslinked polymethacrylate

- Alpha
- SuperAW

These columns are ideal for industrial polymers soluble in water, buffers and many organic solvents.

GEL PERMEATION CHROMATOGRAPHY (GPC)

GPC plays an important role in the characterization of organic-soluble polymers in the chemical and petrochemical industries. TSKgel GPC columns contain particles prepared from polystyrene crosslinked with divinylbenzene.

The proprietary multi-pore particle technology applied in some linear GPC columns ensures a wide pore size distribution in each particle leading to calibration curves with excellent linearity. Available GPC columns are grouped according to their relative lack of adsorptive properties and the speed of analysis.

Each of the types below is described in detail in this chapter.

Application Area: Organic-soluble polymers

Base material: polystyrene

Ultra-low adsorption columns with limited solvent range

- SuperHZ (high throughput)
- SuperMultiporeHZ
- HxL (conventional)

Low adsorption columns with expanded solvent range

- SuperH (high throughput)
- HHR (conventional)

FEATURES

- Rigid hydrophilic and hydrophobic packings
- Four series of SEC columns with diferent ranges of solvent compatibility
- Easy scale up

- **BENEFITS**
- Minimal swelling and excellent physical strength
- Low adsorption resulting in high mass recovery
- Suitable for both types of size exclusion, aqueous (GFC) and non-aqueous (GPC)
- Analytical and preparative pre-packed SEC column

SUMMARY OF TSKgel SIZE EXCLUSION COLUMN LINES

TSKgel SW / SWxL/ SuperSW	TSKgel PW / PWxL	TSKgel Alpha / TSKgel SuperAW	TSKgel H
omposition Silica Po		Polymethacrylate highly crosslinked Poly- methacrylate	
3/2	7 5		6
2.5 - 7.5	2.0 - 12.0 2.0 - 12.0		1.0 - 14.0
100% polar	50% polar	100% polar and nonpolar	100% nonpolar, limited polar
30°C	80°C*	80°C	60-80°C (Hx∟ and SuperHZ) 140°C (H⊮R and SuperH
6.0 (SW, SWxL) / 0.4 (SuperSW)	1.2 (PW) / 1.0 (PWxL)	1.0 (Alpha) / 0.6 (SuperAW)	
1.0-12.0	1.0 - 4.0	2.0 - 4.0	15-60
proteins	water-soluble polymers	intermediate polar polymers	organic-soluble polymers
	SuperSW Silica 3/2 2.5 - 7.5 100% polar 30°C 6.0 (SW, SWxL) / 0.4 (SuperSW) 1.0-12.0	SuperSW TSKger PW / PWxL Silica Polymethacrylate 3/2 7 2.5 - 7.5 2.0 - 12.0 100% polar 50% polar 30°C 80°C* 6.0 (SW, SWxL) / 0.4 (SuperSW) 1.2 (PW) / 1.0 (PWxL) 1.0-12.0 1.0 - 4.0	SuperSWTSKgel PW / PWxLTSKgel SuperAWSilicaPolymethacrylatehighly crosslinked Polymethacrylate3/2752.5 - 7.52.0 - 12.02.0 - 12.0100% polar50% polar100% polar and nonpolar30°C80°C*80°C6.0 (SW, SWxL) / 0.4 (SuperSW)1.2 (PW) / 1.0 (PWxL)1.0 (Alpha) / 0.6 (SuperAW)1.0 - 12.01.0 - 4.02.0 - 4.0proteinswater-soluble polymersintermediate polar

* Except for the TSKgel G-DNA-PW, which can be operated up to 50°C and the 55 mm ID TSKgel PW-type columns, which can be operated up to 60°C. When operating below 10°C, reduce the flow rate to ensure that the maximum pressure is not exceeded.

** Depends on column dimensions and particle size.

Note: The operating conditions and specifications for each column are listed on the Operating Conditions and Specifications sheet (OCS) shipped with the column and in the Ordering Information section at the end of each section.

0

COLUMN SELECTION GUIDE FOR TSKgel GEL FILTRATION COLUMNS

SAMPLE			COLUMN SELECTION	SELECTION CRITERIA		
		_	FIRST CHOICE	ALTERNATIVE	-	
Carbohydrates	polysaccharides		TSKgel GMPWxL TSKgel SuperMultiporePW	TSKgel G5000PWxL & TSKgel G3000PWxL	large pore size, small particles, linear calibration curve, high resolving power	
	oligosaccharides		TSKgel G-Oligo-PW TSKgel SuperOligoPW	TSKgel G2500PWxL	small particles, high resolving power	
Nucleic acids	DNA fragments	large	TSKgel G-DNA-PW or TSKgel G5000PWxL		large pore size, small particles, high resolving power	
		medium and small	TSKgel G4000SWxL, TSKgel BioAssist G4SWxL TSKgel SuperSW3000 or TSKgel G3000SWxL TSKgel BioAssist G3SWxL		suitable pore sizes	
	RNA		TSKgel G4000SWxL TSKgel BioAssist G4SWxL TSKgel SuperSW3000 or TSKgel G3000SWxL TSKgel BioAssist G3SWxL		suitable pore sizes	
	oligonucleotides		TSKgel G2500PWxL		small pore size, ionic interaction	
Proteins	normal size small-medium proteins		TSKgel SuperSW3000 TSKgel G3000SWxL TSKgel BioAssist G3SWxL TSKgel G4000SWxL TSKgel BioAssist G4SWxL TSKgel SuperSW2000 or TSKgel G2000SWxL TSKgel BioAssist G2SWxL	TSKgel G3000PWxL / G4000PWxL	small particles small to medium range pore sizes	
	large proteins	low density lipoprotein	TSKgel G6000PWxL or TSKgel G5000PWxL		large pore sizes	
		gelatin	TSKgel GMPWxL TSKgel SuperMultiporePW-M TSKgel G3000SWxL	TSKgel G5000PWxL & G3000PWxL	large pore size, linear calibration curve	
Peptides	large		TSKgel SuperSW3000 TSKgel G3000SWxL TSKgel BioAssist G3SWxL or TSKgel G2000SWxL TSKgel BioAssist G2SWxL	TSKgel SuperSW2000 / TSKgel G3000PWxL	small to medium range pore size, versatile	
	small		TSKgel G2500PWxL	TSKgel SuperSW2000 ∕TSKgel G2000SWx∟	linear calibration curve, high resolving power	
Viruses			TSKgel G6000PWx∟or TSKgel G5000PWx∟ TSKgel SuperMultiporePW-H		large pore size, high resolving power	
Synthetic polymers			TSKgel GMPWx∟or TSKgel Alpha-M TSKgel SuperMultiporePW	TSKgel G5000PWxL & G3000PWxL / TSKgel Alpha-5000 & Alpha-3000	large pore size, low adsorption, linear calibration curve	
	cationic		TSKgel G3000PWxL-CP TSKgel G5000PWxL-CP TSKgel G6000PWxL-CP		medium to large pore size, low adsorption, linear calibration curve	
Synthetic oligomers	nonionic		TSKgel G-Oligo-PW TSKgel G2500PWx∟or TSKgel Alpha-2500 TSKgel SuperOligoPW and TSKgel SuperMultiporePW-N	TSKgel G2500PW / TSKgel SuperAW2500	small pore size, high resolving power	
	anionic		TSKgel G2500PWx∟or TSKgel Alpha-2500	TSKgel G2500PW / TSKgel SuperAW2500	small pore size, ionic interaction	

TSKgel SW, SWxL AND SUPERSW GEL FILTRATION COLUMNS

HIGHLIGHTS

- TSKgel SW-type columns are all based on spherical silica particles with very high internal pore volumes.
- Silica particles in SW-type columns are chemically bonded with polar diol groups.
- SW-type columns feature low residual adsorption, which is essential for gel filtration analysis.
- Three pore sizes ranges (125 Å, 250 Å and 450 Å) available.
- Stainless steel, glass and PEEK column hardware available.

TSKgel SW series columns (SW, SWxL and Super SW) contain a large pore volume per unit column volume, which results in either higher MW selectivity or better resolution when analyzing proteins. They are based on highly porous silica particles, the surface of which has been shielded from interacting with proteins by derivatization with ligands containing diol functional groups. TSKgel SW series columns stand out from other silica- or polymer-based high performance size exclusion columns by virtue of their large pore volumes and low residual adsorption.

SW and SWxL columns are available in three pore size ranges with nominal pore sizes of 125 Å, 250 Å and 450 Å. SuperSW and QC-PAK column lines are available in 125 Å and 250 Å. SW columns are packed with 10 micron (G2000SW and G3000SW) or 13 micron (G4000SW) particles. SWxL columns contain 5 micron (G2000SWxL and G3000SWxL) or 8 micron (G4000SWxL) particles. SuperSW columns contain 4 micron particles.

RECOMMENDATIONS FOR TSKgel SW SERIES SELECTION SAMPLES OF UNKNOWN MOLECULAR WEIGHT

TSKgel G3000SW_{XL} is the ideal scouting column. If the protein of interest elutes near the exclusion volume, then G4000SW_{XL} is the logical next step. Conversely, if the protein of interest elutes near the end of the chromatogram, try the G2000SW_{XL}.

Proteins (general)

Choose one of the TSKgel SW_{XL} columns using the calibration curves on page 34 to select the appropriate pore size based on knowledge or estimate of protein size.

Monoclonal antibodies

TSKgel G3000SWxL is commonly used for quality control. TSKgel SuperSW3000 is utilized when sample is limited or at very low concentration.

Peptides

TSKgel G2000SWxL is the first selection for the analysis of peptides. TSKgel SuperSW2000 is utilized when sample is limited or at very low concentration.

Other

The use of TSKgel SuperSW columns requires optimization of the HPLC system with respect to extra-column band broadening. Capillary tubing ID, injection volume, detector cell volume, and detector time constant all need to be reduced to fully benefit from the high column efficiency and small peak volumes of the SuperSW columns. Use SW columns when not sample limited or when larger amounts of sample need to be isolated.

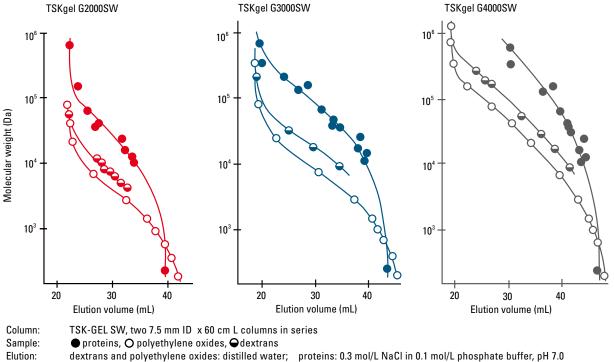
TABLE 1

I	Properties an	ıd S	Separation	Ranges fo	or TSKgel	SW-Type F	ackings

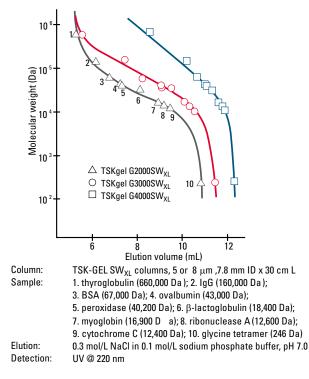
			Molecu	ılar weight of sample (Da)
TSKgel packing	Particle size (µm)	Pore size (Å)	Globular proteins	Dextrans	Polyethylene glycols and oxides
SuperSW2000	4	125	5 x 10³− 1.5 x 10⁵	1 x 10 ³ 3 x 10 ⁴	5 x 10 ² -15 x 10 ³
G2000SWxL/BioAssist G2SWxL	5	125	5 x 10 ³ − 1.5 x 10 ⁵	1 x 10 ³ 3 x 10 ⁴	5 x 10 ² -15 x 10 ³
QC-PAK TSK 200	5	125	5 x 10 ³ − 1.5 x 10 ⁵	1 x 10 ³ 3 x 10 ⁴	5 x 10 ² -15 x 10 ³
G2000SW	10, 13, 20	125	5 x 10 ³ − 1.5 x 10 ⁵	1 x 10 ³ 3 x 10 ⁴	5 x 10 ² -15 x 10 ³
SuperSW3000	4	250	1 x 10 ^₄ − 5 x 10 ^₅	2 x 10 ³ -7 x 10 ⁴	1 x 10³–3.5 x 10⁴
G3000SWxL/BioAssist G3SWxL	5	250	1 x 10 ^₄ − 5 x 10 ^₅	2 x 10 ³ -7 x 10 ⁴	1 x 10³–3.5 x 10⁴
QC-PAK TSK 300	5	250	1 x 10 ^₄ − 5 x 10 ^₅	2 x 10 ³ -7 x 10 ⁴	1 x 10³–3.5 x 10⁴
G3000SW	10, 13, 20	250	1 x 10 ^₄ − 5 x 10 ^₅	2 x 10 ³ -7 x 10 ⁴	1 x 10³–3.5 x 10⁴
G4000SWxL/BioAssist G4SWxL	8	450	2 x 10 ⁴ - 7 x 10 ⁶	4 x 10 ³ -5 x 10 ⁵	2 x 10³–2.5 x 10⁵
G4000SW	13, 17	450	2 x 10 ⁴ - 7 x 10 ⁶	4 x 10 ³ -5 x 10 ⁵	2 x 10 ³ -2.5 x 10 ⁵

Data generated using the following conditions:

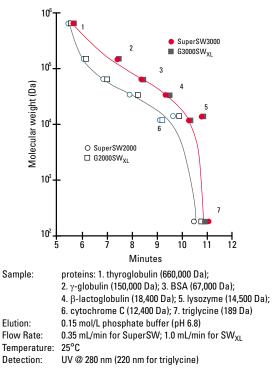
Columns: Two 4 μm, 4.6 mm ID x 30cm L TSKgel SuperSW columns in series; two 5 μm, 7.8 mm ID x 30 cm L TSKgel SW_{xL} columns in series; two 10 μm, 7.5 mm ID x 60 cm L TSKgel SW columns in series


Elution: Globular proteins: 0.3 mol/L NaCl in 0.1 mol/L (0.05 mol/L for SWxx columns) phosphate buffer, pH 7.0 Dextrans and polyethylene glycols and oxides (PEOs): distilled water

CALIBRATION CURVES FOR TSKgel SW-TYPE GEL FILTRATION COLUMNS


The best results are obtained when selecting a column with the sample's molecular weight in the linear portion of the calibration curve.

Polyethylene oxide, dextran and protein calibration curves for TSKgel SW columns



Elution:dextrans and polyethylene oxides: distilled water;proteins: 0.3 mol/L NaCl in 0.1 mol/L phosphate buffer, pHFlow Rate:1.0 mL/minDetection:UV @ 220 nm and RI

Protein calibration curves for TSKgel SWxL columns

SEC

APPLICATIONS OF TSKgel SW-TYPE GEL FILTRATION COLUMNS

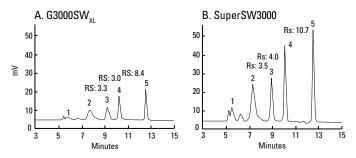

COMPARING TSKgel SW, SWxL AND SUPERSW GEL FILTRATION COLUMNS

FIGURE 1 & FIGURE 2 show the increased resolution and sensitivity of the TSKgel SuperSW columns compared to TSKgel SWxL columns. This is due to the smaller particle size (4 vs. 5 μ m) coupled with a narrow column (4.6 mm ID).

ANALYSIS OF PROTEIN AGGREGATION

TSKgel G3000SWxL columns are the industry standard for agregation analysis in quality control of monoclonal antibodies (mAbs). FIGURE 3 shows the analysis of mAb Aggregates with UV, refractive index (RI) and multi angle light scattering (MALS) detection. When the protein analysis needs to be performed in a metal free environment, the BioAssistSW series offers TSKgel SW packings in PEEK housings, featuring the same performance as stainless steel columns.

FIGURE 1 Comparison of TSKgel Super SW3000 and TSKgel G3000SWxL for the separation of proteins

Column: A. TSKgel G3000SWxL, 7.8 mm ID x 30 cm L;

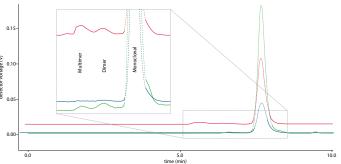

B. TSKgel SuperSW3000, 4.6 mm ID x 30 cm L;

Sample: 5 μ L of a mixture of 1. thyroglobulin, 0.5 mg/mL (660,000 Da); 2. γ -globulin, 1.0 mg/mL (150,000 Da); 3. ovalbumin, 1.0 mg/mL (43,000 Da); 4. ribonuclease A, 1.5 mg/mL (12,600 Da); 5. ρ -aminobenzoic acid, 0.01 mg/mL (137 Da):

Elution: 0.1 mol/L NaSO₄ in 0.1 mol/L in phosphate buffer with 0.05 % NaN₃, pH 6.7; Flow Rate: 1.0 mL/min for G3000SWxL; 0.35 mL/min for SuperSW3000; Temp: 25°C; Detection: UV @ 220nm

■ FIGURE 2 ...

Comparison of TSKgel Super SW2000 and TSKgel G3000SW FOR the separation of Proteins



Column: A. TSKgel G2000SWxL, 7.8 mm ID x 30 cm L;

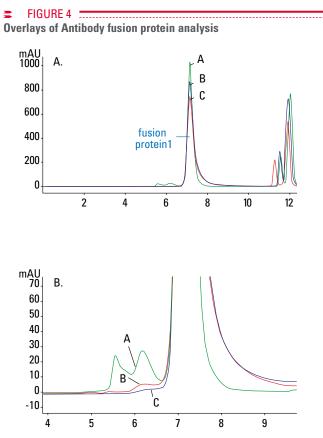
B. TSKgel SuperSW2000, 4.6 mm ID x 30cm L;

Sample: 1. thyroglobulin (0.2 mg/mL); 2. albumin (1.0 mg/mL); 3. ribonuclease A (1.0 mg/mL); 4. p-aminobenzoic acid (0.01 mg/mL); Inj. Volume: 5 μ L; Elution: 0.1 mol/L phosphate buffer + 0.1 mol/L Na₂SO₄ + 0.05 % NaN₃ (pH 6.7); Flow Rate: 0.35 mL/min for SuperSW2000; 1.0 mL/min for G2000SW_{XL}; Temp: 25°C; Detection: UV @ 280nm

FIGURE 3 SEC-Mals-UV-RI analysis of MAB aggregates

Column: TSKgel G3000SWxL column, 5 μm, 7.8 mm ID x 30 cm L Sample: monoclonal antibody, Inj.volume: 20 μL;

Mobile phase: phosphate buffered saline (PBS); Flow rate: 1 mL/min; Detection: MALS (red), refractive index (blue) & UV @ 280 nm (green); HPLC System: LC-20A prominence, Shimadzu;

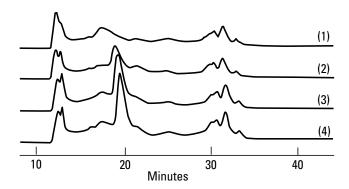

MALS detector: miniDAWN™ TREOS, Wyatt Techn. Corp.

APPLICATIONS OF TSKgel SW-TYPE GEL FILTRATION COLUMNS

ANALYSIS OF ANTIBODY-FUSION PROTEINS

During method development, many variables are examined to ensure method robustness. Factors such as elution profile, peak shape, and recovery are required to be consistent. During a method re-qualification several variables were investigated to eliminate non-specific binding and increase the robustness of an established QC method using a TSKgel SuperSW3000 column. As shown in FIGURE 4, excessive peak tailing of "fusion protein 1" is evident with the use of 0.2 mol/L NaCl (chromatogram c). Additionally, the expected protein dimer and trimer aggregates are not visible. By switching from 0.2 mol/L sodium chloride to 0.2 mol/L of the more chaotropic sodium perchlorate salt, together with a two-fold reduction in the buffer concentration, less peak tailing and distinct peaks for the dimer and trimer species of mAb 1 resulted (chromatogram B). Doubling the perchlorate concentration to 0.4 mol/L provided further improvement in the peak shape of fusion protein 1 and associated aggregate species (chromatogram A). FIGURE 4B is an enlargement of the baseline region, showing an improved peak shape of the dimer and trimer aggregates with the use of 0.4 mol/L NaClO₄.

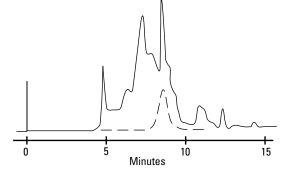
Column: TSKgel SuperSW3000, 4 µm, 4.6 mm ID x 30 cm L; Mobile phase: c: 0.4 mol/L NaClO₄ , 0.05 mol/L NaH₂PO₄, b: 0.2 mol/L NaClO₄, 0.05 mol/L NaH₂PO₄; a: 0.2 mol/L NaCl, 0.1 mol/L NaH₂PO₄; Flow rate: 0.35 mL/min; Detection: UV@214nm; Injection vol.: 5 µL; Samples: antibody fusion protein


MEMBRANE PROTEINS

The effect of different concentrations of surfactant on the separation of membrane proteins is seen in **FIGURE 5**. As the concentration of octaethyleneglycol dodecylether increases to 0.05%, the main peak becomes sharper and recovery increases.

ENZYMES

Mobile phase conditions in GFC are optimized to ensure little or no interaction of the sample with the packing material. This gentle technique allows for high recovery of enzymatic activity. A crude sample of glutathione S-transferase was separated in only 15 minutes on a TSKgel G3000SW_{XL} column and activity recovery was 98% and 89%, respectively. The elution profile of the separation in FIGURE 6 shows that all of the activity eluted in a norrow band of about 1.5 mL.


FIGURE 5 Separation of membrane protein by SEC with different surfactant concentration in the eluent

Column: TSKgel G3000SW, 7.5mm ID x 60 cm L; Sample: Membrane protein from a crude extract from rat liver microsome; Elution: (0.2 mol/L sodium chloride + 20 % glycerol + octaethyleneglycol dodecylether) in 50 mmol/L phosphate buffer, pH 7.0.

Note: concentration of surfactant: (1) 0.005 %, (2) 0.01 %, (3) 0.025 %, (4) 0.05 %; Flow Rate: 1.0 mL/min; Detection: UV @ 280 nm

Column: TSKgel G3000SW_% 5 μm, (7.8 mm ID x 30 cm L); Sample: crude glutathione S-transferase from guinea pig liver extract, 0.7 mg in 0.1 mL; Elution: 0.3 mol/L NaCl in 0.05 mol/L phosphate buffer, pH 7; Flow Rate: 1.0mL/min; Detection: UV@220 nm (solid line) and enzyme assay tests (dashed line); Recovery: enzymatic activity recovered was 89 %

ORDERING INFORMATION

Part #	Description	ID	Length	Particle	Number	<u>Flow rate (mL</u>	<u>/min)</u>	Maximum
		(mm)	(cm)	size (µm)	theoretical plates	Range	Max.	pressure drop (MPa)
TSKgel Gla	ss columns				1			
16214	QC-PAK GFC 200GL	8.0	15	5	≥ 10,000	0.5 - 1.0	1.2	40
16216	QC-PAK GFC 300GL	8.0	15	5	≥ 10,000	0.5 - 1.0	1.2	40
08800	G3000SW, Glass	8.0	30	10	≥ 10,000	0.4 - 0.8	0.8	20
08801	G4000SW, Glass	8.0	30	13	≥ 8,000	0.4 - 0.8	0.8	20
TSKgel Stai	inless steel columns							
18674	SuperSW2000	4.6	30	4	≥ 30,000	0.1 -0.35	0.4	120
21845	SuperSW3000	1.0	30	4	≥ 18,000	0.016	0.02	120
21485	SuperSW3000	2.0	30	4	≥ 25,000	0.065	0.075	120
18675	SuperSW3000	4.6	30	4	≥ 30,000	0.1 - 0.35	0.4	120
08540	G2000SWxL	7.8	30	5	≥ 20,000	0.5 -1.0	1.2	70
08541	G3000SWxL	7.8	30	5	≥ 20,000	0.5 - 1.0	1.2	70
08542	G4000SWxL	7.8	30	8	≥ 16,000	0.5 - 1.0	1.2	35
16215	QC-PAK GFC 200	7.8	15	5	≥ 10,000	0.5 -1.0	1.2	40
16049	QC-PAK GFC 300	7.8	15	5	≥ 10,000	0.5 -1.0	1.2	40
05788	G2000SW	7.5	30	10	≥ 10,000	0.5 -1.0	1.2	20
05789	G3000SW	7.5	30	10	≥ 10,000	0.5 -1.0	1.2	25
05790	G4000SW	7.5	30	13	≥ 8,000	0.5 -1.0	1.2	15
05102	G2000SW	7.5	60	10	≥ 20,000	0.5 -1.0	1.2	40
05103	G3000SW	7.5	60	10	≥ 20,000	0.5 -1.0	1.2	50
05104	G4000SW	7.5	60	13	≥ 16,000	0.5 -1.0	1.2	30
06727	G2000SW	21.5	30	13	≥ 10,000	3.0 -6.0	8.0	10
06728	G3000SW	21.5	30	13	≥ 10,000	3.0 -6.0	8.0	15
06729	G4000SW	21.5	30	17	≥ 8,000	3.0 - 6.0	8.0	10
05146	G2000SW	21.5	60	13	≥ 20,000	3.0 -6.0	8.0	20
05147	G3000SW	21.5	60	13	≥ 20,000	3.0 -6.0	8.0	30
05148	G4000SW	21.5	60	17	≥ 16,000	3.0 -6.0	8.0	20
TSKgel PEE	K Columns							
20027	BioAssist G2SWxL	7.8	30	5	≥ 20,000	0.5 - 1.0	1.2	70
20026	BioAssist G3SWxL	7.8	30	5	≥ 20,000	0.5 - 1.0	1.2	70
20025	BioAssist G4SWxL	7.8	30	8	≥ 16,000	0.5 - 1.0	1.2	35

40

SEC

ORDERING INFORMATION _____

Part #	Description	ID (mm)	Length (cm)	Particle size (µm)	
duard	column products				
8805	SW Guard column, Glass	8.0	4.0		For all 8 mm ID SW glass columns
8762	SuperSW Guard column	4.6	3.5		For 4.6 mm ID SuperSW columns
					(contains SuperSW3000 packing)
8543	SWxL Guard column	6.0	4.0		For all SWxL columns and P/Ns 16215 and 16049
					(contains 3000SWxLpacking)
8008	SWxL Guard column, PEEK	6.0	4.0		For all BioAssist SWxL, PEEK columns
5371	SW Guard column	7.5	7.5		For all 7.5 mm ID SW columns (contains 3000SW packing)
5758	SW Guard column	21.5	7.5		For all 21.5 mm ID SW columns
Bulk p	acking				
8544	SWxLTop-Off, 1g wet gel			5	For SWxLand QC-PAK columns
6819	SW Top-Off, 1g wet gel			10	For all 7.5 mm ID SW columns

TSKgel PW and TSKgel PWxL columns - Gel Filtration Chromatography of water soluble polymers

HIGHLIGHTS

- Hydrophilic, rigid, spherical, porous methacrylate beads pH range of 2 to 12, with up to 50% organic solvent
- Temperatures up to 80°C (50°C for TSKgel G-DNA-PW)
- → Wide separation range up to 8 x 10⁶ Da for linear polymers
- Linear SEC column line incorporating proprietary multi-pore technology
- Specialty columns for low salt separation of cationic polymers

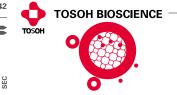
Polymeric TSKgel PW and high resolution TSKgel PWxL columns are designed for SEC of water soluble organic polymers, polysaccharides, DNA, and RNA. They are based on a hydrophilic polymethacrylate matrix. For analytical purposes the TSKgel PWxL columns are preferred, whereas for preparative work the 60 cm TSKgel PW columns are recommended because of their higher loading capacity. For the analysis of proteins and peptides we recommend to use silica based SW type columns.

A number of specialty columns include columns for samples with a broad molecular weight range, oligosaccharides, DNA and RNA. A large pore G6000PW phase is available in PEEK column hardware (TSKgel BioAssist G6PW) for ultra-low sample adsorption during virus analysis. TSKgel PWxL-CP columns are especially suited for the separation of cationic polymers.

The latest addition to the TSKgel PW family are high resolution semi micro columns for oligomer analysis (TSKgel SuperOligoPW) and for analysis of MW distribution of by linear SEC (TSKgel SuperMultipore PW).

TABLE 2

Properties and Separation Ranges for TSKgel PW-Type Packings

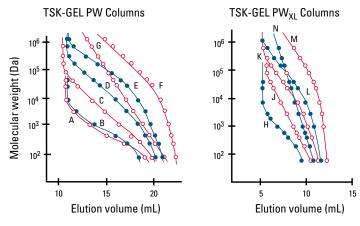

TSKgel Column	Particle size (µm)	Pore size (Å)	MW	/ range
	-		(PEG/PEO)	Dextrans*
G1000PW		12	< 100	< 1 x 10 ³
G2000PW	12	125	< 2 x 10 ³	
G2500PW	12, 17	< 200	< 3 x 10 ³	< 3 x 10 ³
G3000PW	12, 17	200	< 5 x 10 ⁴	
G4000PW	17	500	< 3 x 10 ⁵	
G5000PW	17	1,000	< 1 x 10 ⁶	
G6000PW/ BioAssist G6PW	17	> 1,000	< 8 x 10 ⁶	
GMPW	17	< 100 - 1,000	5 x 10 ² - 8 x 10 ⁶	
G2500PWxL	7	< 200	< 3 x 10 ³	
G3000PWxL	7	200	< 5 x 10 ⁴	< 6 x 10 ⁴
G4000PWxL	10	< 500	< 3 x 10 ⁵	1 x 10 ³ - 7 x 10 ⁵
G5000PWxL	10	1000	< 1 x 10 ⁶	5 x 10 ⁴ - 2.5 x 10 ⁶
G6000PWxL	13	> 100	< 8 x 10 ⁶	5 x 10 ⁵ - 5 x 10 ⁷
G-DNA-PW	10	> 1,000	< 8 x 10 ⁶	< 5 x 10 ⁷
GMPWxL	13	100 - 1,000	5 x 10 ² - 8 x 10 ⁶	< 5 x 10 ⁷
G-Oligo-PW	7	125	< 5 x 10 ³	
SuperMultiporePW-N	4	n/a	3 x 10 ² - 5 x 10 ⁴	
SuperMultiporePW-M	5	n/a	5 x 10 ² - 1 x 10 ⁶	
SuperMultiporePW-H	8 (6-10)	n/a	1 x 10 ³ - 1 x 10 ⁷	
SuperOligoPW	3	n/a	1 x 10 ² - 3 x 10 ³	
G3000PWxL-CP	7	200	< 9 x 10 ⁴	
G5000PWxL-CP	10	1,000	< 1 x 10 ⁶	
G6000PWxL-CP	13	> 1,000	< 2 x 10 ⁷	

Column: TSKgel PW columns, 7.5 mm ID x 60 cm L; TSKgel PWxL, TSKgel PWxL-CP, G-Oligo-PW & G-DNA-PW, 7.8 mm ID x 30 cm L

Elution: Polyethylene glycols and oxides: distilled water; dextrans: 0.2 mol/L phosphate buffer, pH 6.8

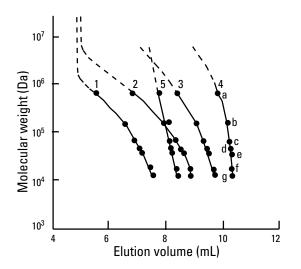
Flow rate: 1.0 mL/min, except for TSKgel SuperMultiporePW and TSKgel SuperOligoPW columns: 0.6 mL/min

Note: *Maximum separation range determined from estimated exclusion limits



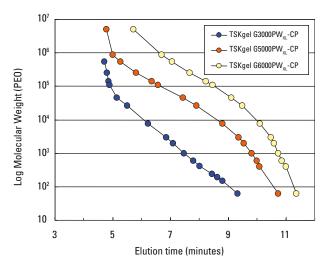
CALIBRATION CURVES FOR TSKgel PW / SUPERMULTIPORE PW GEL FILTRATION COLUMNS

The best results are obtained when selecting a column with the sample's molecular weight in the linear portion of the calibration curve.


= FIGURE 7 =

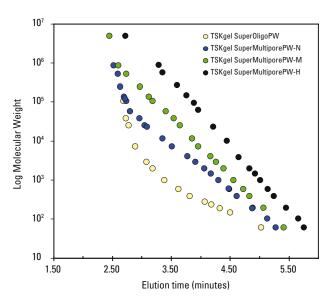
Polyethylene glycol and oxide calibration curves on TSKgel PW and **TSKgel PWxL columns**

Column: TSKgel PW columns: A. G2000PW, B. G2500PW, C. G3000PW, D. G4000PW, E. G5000PW, F. G6000PW, G. GMPW, all 7.5mm ID x 60 cm L TSKgel PWxL columns: H. G2500PWxL, J. G3000PWxL, K. G4000PWxL, L. G5000PWxL, M. G6000PWxL, N. GMPWxL, all 7.8 mm ID x 30 cm L; Elution: distilled water; Flow Rate: 1.0 m L/min; Detection: RI


FIGURE 8 = = Protein calibration curves on TSKgel PW_{x1} columns

Column: 1. TSKgel G3000PWxL, 2. G4000PWxL, 3. G5000PWxL, 4. G6000PWxL, 5. GMPWxL; Sample: a. thyroglobulin (660,000 Da), b. γ-globulin (150,000 Da), c. albumin (67,000 Da), d. ovalbumin (43,000 Da), e. β-lactoglobulin (36,000 Da), f. myoglobin (16,900 Da), g. cytochrome C (12,400 Da); Elution: 0.2 mol/L phosphate buffer (pH 6.8); Flow Rate: 1.0 mL/min; Detection: UV @ 280 nm

FIGURE 9 3


Polyethylene Glycol and Oxide Calibration Curves for TSKgel PWxL-CP Columns

Columns: TSKgel G3000PWxL-CP, 7 µm, 7.8 mm ID x 30 cm L, TSKgel G5000PWxL-CP, 10 μm, 7.8 mm ID x 30 cm L, TSKgel G6000PWxL-CP, 13 μm, 7.8 mm ID x 30 cm L

Mobile phase: 0.1 mol/L NaNO₂; Flow Rate: 1 mL/min; Detection: RI; Temperature: 25°C; Samples: polyethylene oxides (PEO) standards, polyethylene glycols (PEG) standards

Columns: TSKgelSuperOligoPW, SuperMultiporePW-N, SuperMultiporePW-M, SuperMultiporePW-H (each 6.0 mm ID x 15 cm L);

Mobile phase: H₂O; Flow rate: 0.60 mL/min; Detection: RI; Temperature: 25°C; Samples: polyethylene oxides (PEO) standards, polyethylene glycols (PEG) standards, ethylene glycol (EG) standards

3

43

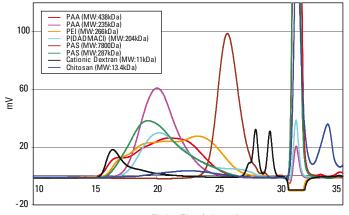
COLUMNS FOR SPECIFIC APPLICATIONS

TSKgel PWxL-CP

The new TSKgel PWxL-CP columns are designed to facilitate the separation of cationic polymers by SEC at low salt conditions. They are based on the well known PW-type of polymeric resins for aqueous SEC. Cationic surface modification enables low salt elution of cationic polymers with high recoveries. The columns show high theoretical plate numbers, linear calibration curves and high durability. They are produced with three pore sizes for diffrent ranges (G3000-, G5000- and G6000PWxL-CP). FIGURE 11 shows the analysis of various cationic polymers on a series of TSKgel PWxL-CP columns.

TSKgel SUPEROLIGOPW & G-OLIGO-PW

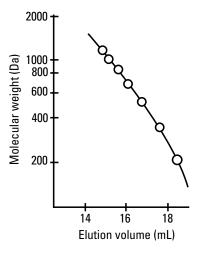
The new TSKgel SuperOligoPW column was developed for the fast determination of molecular mass of aqueous oligomers, particularly oligosaccharides, and low molecular weight aqueous polymers. This is a semi-micro column (6.0 mm ID x 15 cm L) packed with spherical monodisperse polymethacrylate 3 µm particles. The combination of the decreased particle size and small dimensions of the TSKgel SuperOligoPW column enables high speed separation with high resolution - half of the separation time with the same resolution compared to conventional size exclusion columns. An added benefit of the semi-micro and small particle size is lower solvent consumption compared to conventional columns.


TSKgel G-Oligo-PW was designed for high resolution separations of nonionic and cationic oligomers and oligosaccharides such as hydrolyzed cyclodextrins. Because of the presence of residual cationic groups, this column is not recommended for separating anionic materials. The polyethylene glycol and polythylene oxide calibration curves for TSKgel G-Oligo-PW (not shown) are identical to the calibration curve for TSKgel G2500PWxL (shown on the previous page). FIGURE 12 shows the calibration curve for double stranded DNA for the TSKgel G-DNA-PW column.

TSKgel G-DNA-PW

The TSKgel G-DNA-PW column is dedicated to the separation of large polynucleotides, such as DNA and RNA fragments of 500 to 5,000 base pairs. The exclusion limits for double-stranded DNA fragments are lower than those for rRNAs. The packing of the TSKgel G-DNA-PW column has very large pores (>1000 Å) and a small particle size (10 μ m).

For the separation of large DNA fragments greater than 1,000 base pairs, a four-column system is typically required. Baseline resolution of DNA fragments up to 7,000 base pairs can be achieved, provided there is a two-fold difference in the chain length of the fragments.


FIGURE 11Double Stranded DNA Calibration Curve for TSKgel G-DNA-PW Column

Elution Time (minutes)

FIGURE 12

Oigosaccharides Calibration Curve for TSKgel G-Oligo-PW Column

Columns: TSKgel G3000PW_{xL}-CP, 7 µm (7.8 mm ID x 30 cm L), TSKgel G5000PW_{xL}-CP, 10 µm (7.8 mm ID x 30 cm L), TSKgel G6000PW_{xL}-CP, 13 µm (7.8 mm ID x 30 cm L); Eluent: 0.1 mol/L NaNO₃; Flow Rate: 1 mL/min; Detection: RI; Temperature: 25°C; Sample Load: 3 g/L, 100 µL

Column: TSKgel G-Oligo-PW , two 6 µm, 7.8mm ID x 30cm L columns in series; Mobile phase: distilled H₂O; Flow Rate: 1.0 mL/min; Detection: UV@260 nm; Sample: hydrolyzed β -cyclodextrin

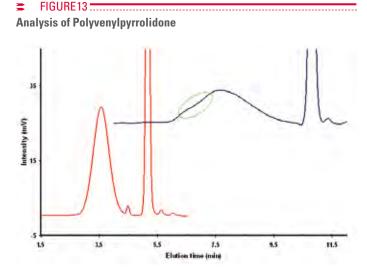
COLUMNS FOR SPECIFIC APPLICATIONS

TSKgel GMPW AND TSKgel GMPWxL

When the molecular weight range of the sample is broad or unknown, Tosoh Bioscience offers mixed-bed and multipore columns for analysis. The mixed bed column TSKgel GMPW and its high resolution counterpart, TSKgel GMPWxL, are packed with the G2500, G3000 and G6000 PW or corresponding PWxL resins. They offer a broad molecular weight separation range. As shown on page 42, the calibration curve for polyethylene glycols and oxides on these columns is fairly shallow and is linear over the range of 100-1,000,000 Da. The introduction of mixed-bed columns has facilitated the analysis of polydisperse samples. Previously, two-column systems such as TSKgel G3000PW and TSKgel G6000PW, were required to achieve good resolution with wide MW-range samples. The substitution of a TSKgel GMPW series column can save both time and money compared with multi-column systems.

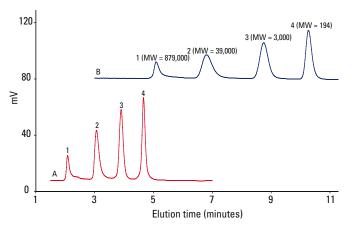
TSKgel SuperMultiporePW

TSKgel SuperMultiporePW columns incorporate the multi-pore particle synthesis technology developed by Tosoh scientists in which monodisperse particles exhibit a broad range of pore sizes. See page 54 for additional information on multi-pore technology. Each particle, by design, has an extended linear calibration curve, thereby greatly diminishing the appearance of chromatograms with inflection points. This allows better reproducibility when determining molecular mass and molecular mass distribution of polymers.


Three semi-micro (6.0 mm ID x 15 cm L) columns are available within the TSKgel SuperMultiporePW series containing 4, 5 or 8 μ m particles. This enables high speed separation for aqueous polymers and low solvent consumption compared to the conventional SEC columns. In addition, a wide separation range can be analyzed with the three different columns, from high molecular mass aqueous polymers to oligomers.

Multi-pore, semi-micro SEC columns provide high resolution and smooth peak shapes without shoulders of inflection points. This leads to better accuracy and reproducibility when determining the molecular mass distribution of water soluble polymers

COMPARISON WITH CONVENTIONAL GPC COLUMNS


Figure 13 shows the SEC analysis of a real sample -Polyvinylpyrrolidone (PVP) K-30- on a series of conventional TSKgel G3000PWxL and G5000PWxL columns compared to the one obtained with a single TSKgel SuperMultiporePW-M linear SEC column (MW range 600,000 – 1,500,000). On a series of conventional SEC columns the Polyvinylpyrrolidone peak shows an inflection point, which does not appear on the SuperMultiporePW-M column. Analysis is much faster and more sensitive when applying the new multi-pore packing.

A mixture of polyethylene oxide (PEO) and polyethylene glycol (PEG) was analyzed on a semi-micro TSKgel SuperMultiporePW-M column and on conventional-sized TSKgel G3000PWxL and TSKgel G5000PWxL columns in series. As shown in Figure 14, the analysis using the TSKgel SuperMultiporePW-M column was completed in half the time and with higher resolution than the analysis performed using the TSKgel G3000PWxL and TSKgel G5000PWxL columns. This is due to the semi-micro dimensions (6.0 mm ID x 15 cm L) and the smaller particle size (5 μ m) of the TSKgel SuperMultiporePW-M column compared to the 7.8 mm ID x 30 cm L size and 7 and 10 μ m particle size of the TSKgel G3000PWxL and TSKgel G5000PWxL columns respectively.

Columns: TSKgel SuperMultiporePW-M, 6 mm ID x 15 cm L x 1 (red) TSKgel G3000PW_{xL} & G5000PW_{xL}, each 7.8 mm ID x 30 cm L in line (blue); Sample: Polyvinylpyrrolidone (K-30); Mobile phase: 0.1 mol/L NaNO₃; Flow rate: 0.6 mL/min; Detection: RI

FIGURE14 Comparison of analysis of a mixture of PEO and PEG

Column: TSKgel SuperMultiporePW-M, 6.0 mm ID x 15 cm L; TSKgel G5000PW_{XL} + G3000PW_{XL}, each 6.0 mm ID x 15 cm L; Mobile phase: H₂O; Flow rate: 0.6 mL/min; Detection: RI; Temperature: 25°C; Injection vol.: A: 20 μ L, B: 100 μ L; Samples: mixture of PEO and PEG

SEC

TABLE 3 🚍

Ξ

SEC

45

OPTIMIZING GEL FILTRATION WITH TSKgel PW AND TSKgel PWxL COLUMNS

SELECTING MOBILE PHASE BUFFERS

SEC separation is based on the difference of apparent molecular size with no additional interaction between the column matrix and the sample molecules. In practice, however, a small number of weakly charged groups on the surface of PW-type packings can cause changes in elution order from that of an ideal system. The eluent composition can vary greatly with TSKgel PW columns to be compatible with a wide range of neutral, polar, anionic, and cationic samples. The table below lists appropriate eluents for GFC of major polymer types.

For some nonionic, nonpolar polymers, such as polyethylene glycols, ideal size exclusion behavior can be obtained by using distilled water. More polar ionic polymers may exhibit abnormal peak shapes or minor peaks near the void volume when eluted with distilled water, due to ionic interactions between the sample and residual charged groups on the resin surface. To eliminate ionic interactions, a neutral salt such as sodium nitrate or sodium sulfate should be added. Generally, a salt concentration of 0.1 to 0.5 mol/L is sufficient to overcome undesirable ionic interactions.

HYDROPHOBIC SAMPLES

TSKgel PW-type resins are more hydrophobic than polysaccharide gels such as cross-linked dextran. Depending on the sample, this can lead to hydrophobic interaction as a secondary retention mechanism. The extent of hydrophobic interaction increases as the salt concentration of the eluent increases, but it can be reduced by the addition of an organic modifier such as acetonitrile. Water-soluble organic solvents are frequently used as modifiers to suppress hydrophobic interactions between the sample and the resin surface.

Modifiers are also used for optimizing the elution of both charged and neutral hydrophobic polymers. Typical examples for a variety of sample types are given in the table below. All TSKgel PW-type column packings are compatible with 20 % aqueous solutions of methanol, ethanol, propanol, acetonitrile, dimethyl formamide, dimethyl sulfoxide, formic acid, and acetic acid. In addition, these columns can be operated in 50 % aqueous acetone.

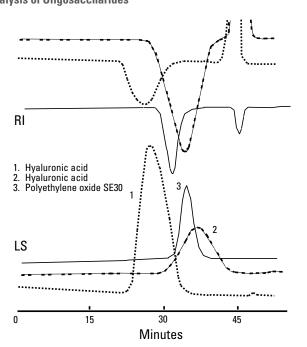
Recommended eluents for GFC of water-soluble polymer on TSKgel PW-type columns

Type of polymer	Typical sample	Suitable eluent
Nonionic hydrophilic	polyethylene glycol soluble starch, methyl cellulose, pullulan dextran, hydroxyethyl cellulose, polyvinyl alcohol, polyacrylamide	distilled water 0.01N NaOH 20% DMSO Buffer or salt solution (e.g., 0.1–0.5 mol/L NaNO ₃)
Nonionic hydrophobic	polyvinylpyrrolidone	Buffer or salt solution with organic solvent (e.g., 20% ACN in 0.1mol/L NaNO ₃)
Anionic hydrophilic	sodium chondroitin sulfate, sodium alginate, carboxymethyl cellulose, sodium polyacrylate, sodium hyaluronate	Buffer or salt solution (e.g., 0.1 mol/L NaNO ₃)
Anionic hydrophobic	sulfonated lignin sodium salt, sodium polystyrenesulfonate	Buffer or salt solution with organic solvent (e.g., 20% ACN in 0.1 mol/L NaNO ₃)
Cationic hydrophilic	glycol chitosan, DEAE-dextran, poly(ethyleneimine), poly(trimethylaminoethyl methacrylate) iodide salt	0.5 mol/L acetic acid with 0.3 mol/L Na ₂ SO ₄ , or 0.8 mol/L NaNO ₃ (0.1 mol/L NaNO ₃ for PWxL-CP type)
Cationic hydrophobic	poly(4-vinylbenzyltrimethylammonium chloride), poly(N-methyl-2-vinylpyridinium) iodide salt	0.5 mol/L acetic acid with 0.3 mol/L $\rm Na_2SO_4$
Amphoteric hydrophilic	peptides, proteins, poly-and oligosaccharides, DNA, RNA	Buffer or salt solution (e.g., 0.1 mol/L NaNO ₃)
Amphoteric hydrophobic	blue dextran, collagen, gelatin, hydrophobic proteins hydrophobic peptides	Buffer or salt solution with organic solvent (e.g., 20% ACN in 0.1 mol/L NaNO ₃ or 35 - 45% ACN in 0.1% TFA)

APPLICATIONS OF TSKgel PW-TYPE GEL FILTRATION COLUMNS

POLYSACCHARIDES

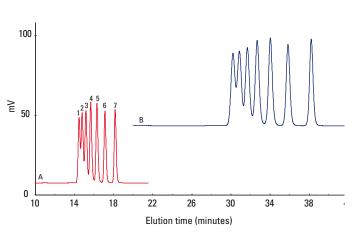
TSKgel PW columns are recommended for polysaccharide analysis due to their ability to separate a wide molecular weight distribution. Nonionic polysaccharides are the least complicated molecules to analyze by SEC because they seldom exhibit secondary interactions with the solid support. TSKgel G5000PW and TSKgel G3000PW in series are effective for the characterization of clinical dextran.


Cationic samples can be adsorbed on the resin by electrostatic interaction. If the polymer is strongly cationic, a fairly high salt concentration is required to prevent ionic interactions with conventional SEC packings. A mobile phase of 0.5 mol/L acetic acid with 0.3 mol/L Na_2SO_4 can also be used.

The new TSKgel PWxL-CP series enables elution of water soluble, cationic polymers under low salt conditions (e.g. 0.1 mol/L NaNO₃). An effective separation of the anionic hydrophilic gluco-saminoglycan, hydraluronic acid, is shown in FIGURE 15 on a TSKgel G6000PW and TSKgel G4000PW column in series with a 0.2 mol/L sodium chloride mobile phase.

OLIGOSACCHARIDES

Figure 16 shows the rapid analysis of maltose oligomers using a TSKgel SuperOligoPW column compared to a TSKgel G-Oligo-PW column. The faster analysis time is due to the semi-micro dimensions (6.0 mm ID x 15 cm L) and the small particle size (3 μ m) of the TSKgel SuperOligoPW column compared to the 7.8 mm ID x 30 cm L size and 7 μ m particle size of the TSKgel G-Oligo-PW column.


FIGURE15

Column: TSKgel G6000PW + G4000PW, two 7.5 mm ID x 60 cm L columns in series; Mobile phase: 0.2 mol/L NaCl; Flow Rate: 0.9 mL/min Temperature: 40°C; Samples: hyaluronic acid

■ FIGURE16

Column: A: TSKgel SuperOligoPW, 3 μ m, 6.0 mm ID x 15 cm L x 4 B: TSKgel G-Oligo-PW, 7 μ m, 7.8 mm ID x 30 cm L x 4; Mobile phase: H₂O Flow rate: A: 0.6 mL/min B: 1.0 mL/min; Detection: RI; Temperature: 40°C Injection vol.: A: 10 μ L B: 50 μ L; Samples: 1.maltoheptose, 2. maltohexose, 3. maltopentose, 4. maltotetraose, 5. maltotriose, 6. maltose, 7. glucose

SEC

ORDERING INFORMATION

Part #	Description	ID (mm)	Length (cm)	Particle size (µm)	Number theoretical plates	<u>Flow rate (mL/min)</u> Range	Max.	Maximum pressure drop (MPa)
TSKge	l Stainless Steel Columns				,			,
22789	SuperMultiporePW-N	6.0	15	4	>16,000	0.3 - 0.6	0.6	4.5
22790	SuperMultiporePW-M	6.0	15	5	>12,000	0.3 - 0.6	0.6	2.7
22791	SuperMultiporePW-H	6.0	15	8 (6-10)	>7,000	0.3 - 0.6	0.6	0.9
22792	SuperOligoPW	6.0	15	3	>16,000	0.3 - 0.6	0.6	5.0
08031	G-Oligo-PW	7.8	30	7	≥ 16,000	0.5 - 0.8	1.0	4.0
08032	G-DNA-PW	7.8	30	10	≥ 10,000	0.2 - 0.5	0.6	2.0
08020	G2500PWxL	7.8	30	7	≥ 16,000	0.5 - 0.8	1.0	4.0
08021	G3000PWxL	7.8	30	7	≥ 16,000	0.5 - 0.8	1.0	4.0
08022	G4000PWxL	7.8	30	10	≥ 10,000	0.3 - 0.6	1.0	2.0
08023	G5000PWxL	7.8	30	10	≥ 10,000	0.3 - 0.6	1.0	2.0
08024	G6000PWxL	7.8	30	13	≥ 7,000	0.3 - 0.6	1.0	2.0
08025	GMPWxL	7.8	30	13	≥ 7,000	0.3 - 0.6	1.0	2.0
21873	G3000PWxL-CP	7.8	30	7	≥ 16,000		1.0	5.5
21874	G5000PWxL-CP	7.8	30	10	≥ 10,000		1.0	2.5
21875	G6000PWxL-CP	7.8	30	13	≥ 7,000		1.0	2.0
05760	G1000PW	7.5	30	12	≥ 5,000	0.5 - 1.0	1.2	2.0
05761	G2000PW	7.5	30	12	≥ 5,000	0.5 - 1.0	1.2	2.0
08028	G2500PW	7.5	30	12	≥ 5,000	0.5 - 1.0	1.2	2.0
05762	G3000PW	7.5	30	12	≥ 5,000	0.5 - 1.0	1.2	2.0
05763	G4000PW	7.5	30	17	≥ 3,000	0.5 - 1.0	1.2	1.0
05764	G5000PW	7.5	30	17	≥ 3,000	0.5 - 1.0	1.2	1.0
05765	G6000PW	7.5	30	17	≥ 3,000	0.5 - 1.0	1.2	1.0
08026	GMPW	7.5	30	17	≥ 3,000	0.5 - 1.0	1.2	1.0
05105	G2000PW	7.5	60	12	≥ 10,000	0.5 - 1.0	1.2	4.0
08029	G2500PW	7.5	60	12	≥ 10,000	0.5 - 1.0	1.2	4.0
05106	G3000PW	7.5	60	12	≥ 10,000	0.5 - 1.0	1.2	4.0
05107	G4000PW	7.5	60	17	≥ 6,000	0.5 - 1.0	1.2	2.0
05108	G5000PW	7.5	60	17	≥ 6,000	0.5 - 1.0	1.2	2.0
05109	G6000PW	7.5	60	17	≥ 6,000	0.5 - 1.0	1.2	2.0
08027	GMPW	7.5	60	17	≥ 6,000	0.5 - 1.0	1.2	2.0
08030	G2500PW	21.5	60	17	≥ 10,000	1.6 - 6.0	8.0	2.0
00000	023001 77	21.5	00	17	2 10,000	1.0 - 0.0	0.0	2.0
PEEK								
20024	BioAssist G6PW	7.8	30	17	≥ 3,000	0.5 - 1.0	1.2	10
Guard	columns							
22793	SuperMP (PW)-N Guard column	4.6	3.5	4				
22794	SuperMP (PW)-M Guard column		3.5	5				
22795	SuperMP (PW)-H Guard column	4.6	3.5	8				
22796	SuperOligoPW Guard column	4.6	3.5	3				
08034	Oligo Guard column	6.0	4.0	13	For 7.8 mm ID G	-Oligo-PW columns		
08033	PWxL Guard column	6.0	4.0	12		WxL& G-DNA-PW (TSK	ael G3000P	N nacking)
21876	PWxL-CP Guard column	6.0	4.0	13		WxL-CP columns	35. 200001	194614131
06763	PW-L Guard column	7.5	7.5	13		1000PW & G2000PW (T	SKael G200	0PW packing)
06762	PW-H Guard column	7.5	7.5	13		2500PW through GMP	-	e. or paoking/
06758	PW-H Guard column	21.5	7.5	17		G2500PW through G500		ns
20700		5		.,		0000		
<u>Bulk p</u>	acking							
08035	PWxLTop-Off, 1 g wet resin			10	For all PWx∟ an	d G-DNA-PW columns		

TSKgel ALPHA AND SUPERAW GEL FILTRATION COLUMNS

Gel Filtration and Gel Permeation Chromatography of water-soluble and polar organic-soluble polymers

HIGHLIGHTS ------

- A unique hydrophilic, polyvinyl resin is available in conventional column dimensions (Alpha) and high throughput column format (SuperAW).
- Exhibits strong mechanical stability and minimal swelling characteristics
- A wide range of solvent compatibility, from 100% water to 100% non-polar organic solvents
- The reduced particle size and shorter column length of TSKgel SuperAW columns provide equivalent resolution in one half the time for high throughput applications.
- Unlike polystyrene-divinylbenzene (PS-DVB) resins that may adsorb polymers due to hydrophobic interaction, both the TSKgel Alpha and
- SuperAW columns allow for the separation of polymers soluble in methanol.
- Provide accurate molecular weight determination of samples in dimethyl formamide and exhibit normal retention of polystyrene polymers
- System peaks from salts in the eluent elute away from the oligomer of interest, providing accurate MW deter-minations.

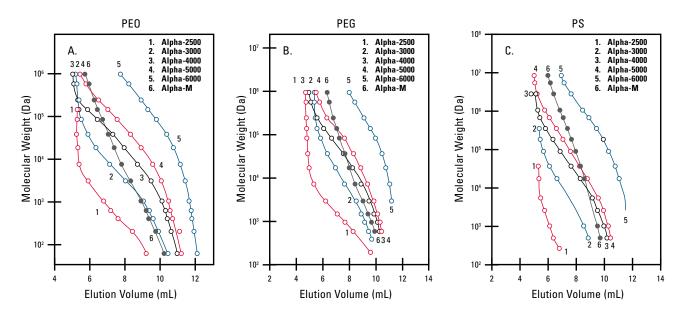
COLUMN SELECTION

The **TSKgel Alpha Series** consists of six columns with three particle sizes: 7, 10, and 13 μ m. These columns span a wide MW separation range from 100 to more than 1 x 10⁶ Da when using polyethylene oxide (PEO) as a MW standard. Exclusion limits for the TSKgel Alpha columns for polyethylene oxide (PEO), polyethylene glycols (PEG) and polystyrenes (PS) are shown in the table below. Calibration curves for the TSKgel Alpha Series columns are shown on the next page for polyethylene oxide, polyethylene glycol and polystyrene standards.

The **TSKgel SuperAW** series contains a similar chemistry as the TSKgel Alpha series but offers the benefit of smaller particle sizes (4 μ m to 9 μ m) and smaller column dimensions. Reductions in analysis time and mobile phase consumption make SuperAW columns ideal for high throughput applications. TSKgel Alpha and SuperAW columns are offered in 5 discrete exclusion ranges and 1 mixed bed. Both column types can accommodate polymer standards up to several million Dalton molecular weight (see calibration curves on the next page

TABLE 3

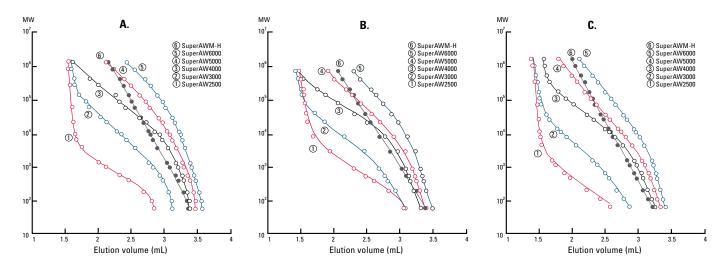
Exclusion limits for TSKgel Alpha Series and SuperAW Series columns


TSKgel Column	Particle size (µm)	Exclusion limit (Da) for various standards and eluents				
		PEOª/H ₂ O	PS ⁵ /10 mmol/L LiBr in DMF	PEG°/10 mmol/L LiBr in MeOH		
Alpha-2500	7	5 x 10 ³	1 x 10 ⁴	1 x 10 ⁴		
Alpha-3000	7	9 x 10 ⁴	1 x 10 ⁵	6 x 10 ⁴		
Alpha-4000	10	4 x 10 ⁵	1 x 10 ⁶	3 x 10 ⁶		
Alpha-5000	10	1 x 10 ⁶	7 x 10 ⁶	N.D.		
Alpha-6000	13	> 1 x 10 ⁷	> 1 x 10 ⁷	N.D.		
Alpha-M	13	> 1 x 10 ⁷	> 1 x 10 ⁷	N.D.		
SuperAW2500	4	5 x 10 ³	8 x 10 ³	1 x 10 ⁴		
SuperAW3000	4	9 x 10 ⁴	8 x 10 ⁴	1 x 10 ⁵		
SuperAW4000	6	1 x 10 ⁶	6 x 10 ⁵	6 x 10 ⁵		
SuperAW5000	7	1 x 10 ^{6*}	N.D.	N.D.		
SuperAW6000	9	1 x 10 ^{7*}	N.D.	N.D.		
SuperAWM-H	9	1 x 10 ^{7*}	N.D.	N.D.		

N.D. = not determined a Polyethylene oxide b Polystyrene divinyl benzene c Polyethylene glycol

* Exclusion limit for SuperAW5000, SuperAW6000, and SuperAWM-H are estimated, respectively

CALIBRATION CURVES FOR TSKgel ALPHA AND SUPERAW GEL FILTRATION COLUMNS


The best results are obtained when selecting a column with the sample's molecular weight in the linear portion of the calibration curve.

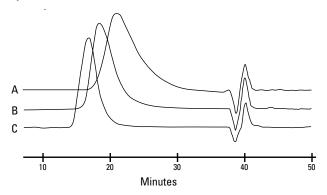
Polyethylene oxide (PEO), polyethylene glycol (PEG) and polystyrene (PS) calibration curves for TSKgel Alpha columns

Column: TSKgel Alpha Series, 7.8 mm ID x 30 cm L; Eluent: A. H₂O; B. 10 mmol/L LiBr in Methanol; C. 10 mmol/L LiBr in DMF; Flow Rate: 1.0 mL/min; Temperature: A. 25°C; B. 25°C; C. 40°C; Detection: RI

Calibration curves for TSKgel SuperAW series in different solvents with different polarity

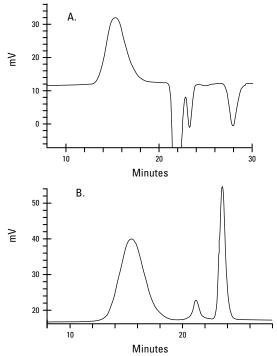
Column: TSK-GEL SuperAW Series (6.0 mm ID x 15 cm L) Eluent: A. Water; B. MeOH containing 10 mmol/L LiBr; C. DMF containing 10 mmol/L LiBr Flow rate: 0.6 mL/min; Temperature: 25°C; Detection: Refractive index detector Samples: Standard polyethylene oxide, polyethylene glycol, ethylene glycol

APPLICATIONS OF TSKgel ALPHA AND SUPERAW GEL FILTRATION COLUMNS


The versatility of using TSKgel Alpha columns with various polar solvents is illustrated in **FIGURE 17** for the analysis of cellulose derivatives. A TSKgel Alpha-M column was used to separate ethylcellulose with the polar solvent DMF and ethylhydroxyethyl cellulose with methanol.

The separation of polyvinylalcohol with different degrees of saponification is shown in FIGURE 18. This separation was performed with a TSKgel Alpha-5000 and a TSKgel Alpha-3000 column in series using a hexafluoroisopropanol mobile phase.

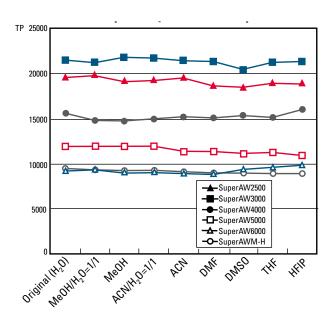
FIGURE 19 shows that the column efficiency of TSKgel SuperAW series columns is maintained in a wide variety of polar organic solvents.


FIGURE 18 _____

Polyvinylalcohol characterization using TSKgel Alpha-5000 and Alpha-3000 columns in series

Column: TSKgel Alpha-5000 and Alpha-3000, 7.8 mm ID x 30 cm L in series Sample: degree of saponification of polyvinyl alcohol: A. 75%, B. 88%, C. 100%; Eluent: hexafluoroisopropanol (HFIP); Flow Rate: 0.5 mL/min; Temperature: 40°C; Detection: RI

FIGURE17 TSKgel Alpha-M separation of cellulose derivatives



Column: TSKgel Alpha-M, 7.8 mm ID x 30 cm L;

Sample: A. 50 μ L ethylcellulose, 0.1%; B. 50 μ L ethylhydroxyethylcellulose, 0.1%; Elution: A. 10 mmol/L LiBr in DMF; B. 10 mmol/L LiBr in methanol; Flow Rate: 0.5 mL/min; Temperature: 40°C; Detection: RI

= FIGURE 19

Solvent Compatibility of TSKgel SuperAW series

Column: TSKgel SuperAW Series (6.0 mm ID x 15 cm L); Eluent: Water Flow rate: 0.6 mL/min; Temperature: 25°C; Detection: Refractive index detector Sample: Ethylene glycol; Inj. volume: 5 μ L (2.5 g/L)

SEC

ORDERING INFORMATION

Part #	Description	ID	Length	Particle	Number	<u>Flow rate (m</u>	nL/min)	Maximum
		(mm)	(cm)	size (µm)	theoretical plates	Range	Max.	pressure drop (MPa
[SKgel	Stainless Steel Columns							
8339	Alpha-2500	7.8	30	7	≥ 16,000	0.5 - 0.8	1.0	4.0
8340	Alpha-3000	7.8	30	7	≥ 16,000	0.5 - 0.8	1.0	4.0
8341	Alpha-4000	7.8	30	10	≥ 10,000	0.3 - 0.6	1.0	3.0
8342	Alpha-5000	7.8	30	10	≥ 10,000	0.3 - 0.6	1.0	3.0
8343	Alpha-6000	7.8	30	13	≥ 7,000	0.3 - 0.6	1.0	2.0
18344	Alpha-M (mixed bed)	7.8	30	13	≥ 7,000	0.3 - 0.6	1.0	2.0
Guard c	olumns							
8345	Alpha Guard column	6	4	13	For all Alph	na columns		
FSK gel	VMpak columns*							
20011	VMpak-25	2.0	5	7	≥ 1,000	0.1 - 0.2	0.25	20
0012	VMpak-25	2.0	15	7	≥ 3,000	0.1 - 0.2	0.25	60
「SKgel	Stainless Steel Columns							
9315	SuperAW2500	6.0	15	4	≥ 16,000	0.3 - 0.6	0.6	60
9316	SuperAW3000	6.0	15	4	≥ 16,000	0.3 - 0.6	0.6	60
9317	SuperAW4000	6.0	15	6	≥ 10,000	0.3 - 0.6	0.6	40
9318	SuperAW5000	6.0	15	7	>10,000	0.3 - 0.6	0.6	30
9319	SuperAW6000	6.0	15	9	>7,000	0.3 - 0.6	0.6	20
9320	SuperAWM-H	6.0	15	9	>7,000	0.3 - 0.6	0.6	20
Guard c	olumns							
9321	SuperAW-L Guard Column	4.6	3.5	7	For SuperAV	V2500-4000 colum	ins.	
9322	SuperAW-H Guard Column	1 4 6	3.5	13	For SuperAV	V5000-AWM-H co	lumne	

*TSKgel VMpak-25 series contains a similar packing as TSKgel Alpha-2500. It can be used for multimodal LC/LC-MS separations.

TSKgel HxL, HHR, SUPERH AND SUPERHZ GEL PERMEATION COLUMNS Polymer-based columns for Gel Permeation Chromatography of organic-soluble polymers

HIGHLIGHTS

- Porous, highly cross-linked, spherical polystyrene divinylbenzene (PS-DVB) resin.
- → Five different TSKgel H-type columns are available. Each of these are packed with different particle sizes (see table below).
- Expanded molecular weight ranges with exclusion limits from 1,000 Da to an estimated 4 x 108 Da
- Minimal shrinking and swelling of the column bed
- Chemically and thermally stable
- Use 4.6 & 6.0 mm ID SuperMultiporeHZ, SuperHZ and Super H columns for reduced solvent consumption in high throughput analysis.
- SuperMultiporeHZ and MultiporeHxL columns provide linear calibration curves over a wider MW range.
- Semi-micro SuperHZ columns now available as multipore columns with linear calibration curves.

TSKgel H Series columns are recommended for the analysis of organicsoluble polymers and are packed with spherical particles composed of polystyrene cross-linked with divinylbenzene (PS-DVB). Each line of columns within this series differs in degree of inertness and operating temperature range. The packings are available in eight pore sizes and span four different column chemistries. For polymer samples with a broad molecular range, packing of several pore sizes are provided in the mixed bed columns: TSKgel SuperHZM series, TSKgel SuperHM series, TSKgel GMHxL, TSKgel GMHHR, and selected high temperature versions provide linear calibration curves up to several million Daltons (see page 53).

COLUMN SELECTION

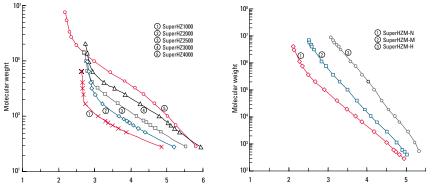
The Super prefix refers to the efficiency of the column. The Super series columns contain ultra efficient particles as small as 3 µm, housed in 15 cm length columns. The smaller particle allows for equivalent resolution to conventional HxL columns, with 50% less run time due to the shorter column length. The Super series columns are an excellent choice for high throughput polymer analysis.

TARIF 4

Series Type	SuperMultiporeHZ	SuperHZ	Hxl	SuperH	Ннв
Application focus Ultra-high perform with a low dead volume and a wid pore distribution i each particle for superior linearity		High-throughput polymer analysis with ultra low polymer adsorption. Limited solvent compatibility range.	Conventional polymer analysis with ultra low polymer adsorption. Ltd solvent compatibility range.	High-throughput polymer analysis with expanded solvent compatibility.	Conventional polymer analysis with expanded solvent compatibility range.
Particle size	3, 4 and 6 μm, depending on pore size	3, 5 and 10 µm, depending on pore size	5 and 13 µm, depending on pore size	3 and 5 μm, depending on pore size	5 µm
Theoretical plates ¹		16,000/15 cm column	16,000/30 cm column	16,000/15 cm column	16,000/30 cm column
Maximum temperature		G1000 - G4000 60°C G5000 - mixed 80°C	G1000 - G4000 60°C G5000 - mixed 80°C	140°C	140°C
Standard shipping solvent	THF	THF	THF ²	THF ²	THF ²
THF can be switched to	benzene, chloroform, te dicholoroethane ³	oluene, xylene, dichlorometh	ane ³ and	see our website for information	detailed
Other shipping solvents available?	yes ⁴	yes ⁴		no	
Number of solvent substitutions	One time only	One time only	One time only	Several⁵	Several⁵
Solvent exchangeLinear gradient with a 2 %/min rate of changeinstructionsat a flow rate <0.25 mL/min.			Linear gradient with a 2 %/min rate of change at a flow rate <0.5 mL/min.	Linear gradient with change according to on our website.	

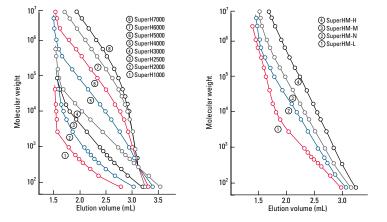
 Theoretical plates listed are based on smallest particle size listed
 High-temperature columns (HT) are shipped with OCDB (Orthochlorodivinylbenzene) as standard shipping solvent.

See our website for available shipping solvents 5) After switching to a very polar solvent such as acetone,

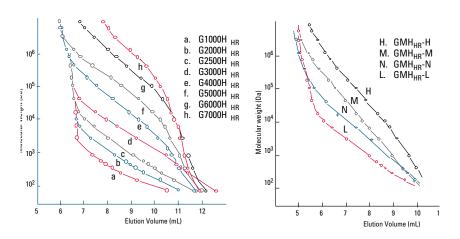

switching back to a nonpolar solvent is not recommended.

3) Switching from THF to dichloromethane and dichloroethane is not recommended for G1000 pore size columns

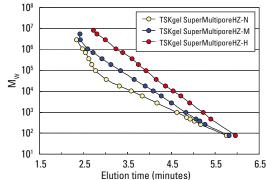
SEC


CALIBRATION CURVES FOR TSKgel H-TYPE GELPERMEATION COLUMNS

Calibration curves for TSKgel SuperHZ columns with polystyrene standards

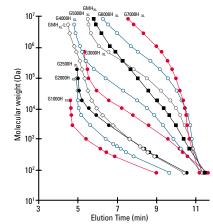

Column: TSKgel SuperHZ series (4.6 mm ID x 15 cm L); Eluent: THF; Flow rate: 0.35 mL/min; Temp.: 25°C; Sample: polystyrene standards; Inj. volume: 2 μ L

Calibration curves for TSKgel SuperH columns with polystyrene standards


Column: TSKgel SuperH series (6.0 mm ID x 15 cm L); Eluent: THF; Flow rate: 0.6 mL/min; Temp.: 25°C; Detection: UV@254 nm; Sample: polystyrene standards

Calibration curves for TSKgel $\mathbf{H}_{_{\!H\!R}}$ columns with polystyrene standards

Column: TSKgel H_{HR}series (7.8 mm ID x 30 cm L); Sample: polystyrene standards; Elution: THF Flow Rate: 1.0 mL/min; Temp.: 25°C; Detection: UV@254 nm

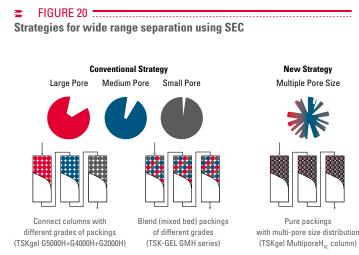

Calibration curves for TSKgel SuperMultiporeHZ-M, H and N columns

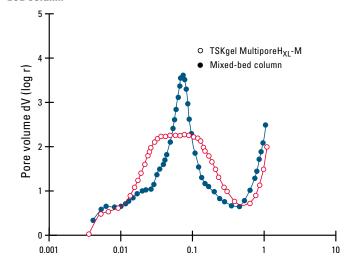
Columns: TSKgel SuperMultiporeHZ-N, 3 μ m, 4.6 mm ID x 15 cm L, TSKgel SuperMultiporeHZ-M, 4 μ m, 4.6 mm ID x 15 cm L, TSKgel SuperMultiporeHZ-H, 6 μ m, 4.6 mm ID x 15 cm L; Mobile phase: THF; Flow rate: 0.35 mL/min; Detection: UV@254nm; Temp.: 25°C; Samples: polystyrene standards

The best results are obtained when selecting a column with the sample's molecular weight in the linear portion of the calibration curve.

Calibration curves for TSKgel \mathbf{H}_{xL} columns with polystyrene standards

Column size: 7.8 mm ID x 30 cm L; Sample: polystyrene standards; Eluent: THF; Flow Rate: 1.0 mL/min; Temp.: 25°C; Detection: UV @ 254 nm

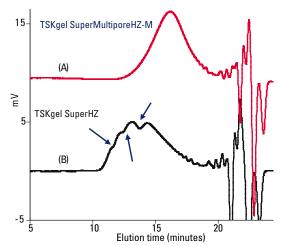



SEC

MULTI-PORE SIZE DISTRIBUTION IN A POLYSTERENE PACKING MATERIAL Novel approach to GPC of samples with a wide range of molecular weights

Prior to the introduction of **TSKgel MultiporeHx**L and **SuperMultiporeHZ** columns, scientists separating polymers with a wide range of molecular weights were left with two options. One option is to use multiple columns of different pore sizes linked together in series. A second is to use a column packed with a mixed bed resin of different pore sizes at an optimized mix ratio. However, problems can occur with both of these methods, which include distortion of the chromatogram or deviations between the actual calibration curve and the calibration curve approximated from data obtained from the molecular weight standards.

As is shown in Figure 20, a novel approach to solve this problem was developed by Tosoh scientists and is incorporated in TSKgel MultiporeHxL and SuperMultiporeHZ Series columns.



These columns are packed with particles of uniform size synthesized with a broad distribution of pore sizes. This novel approach creates a linear calibration curve within each particle. Therefore, columns with an extended linear calibration curve can now be prepared without mixing particles of different pore sizes. This results in sharper peaks without inflection points that may be observed using mixed-bed columns.

The pore size distributions of the TSKgel MultiporeHxL-M column and a mixed-bed column are shown in FIGURE 21. The mixed-bed column shows a sharp maximum for pores with a diameter of 0.08 μ m, though the overall pore size distribution ranges from 0.006 to 0.6 μ m in diameter. In the case of the TSKgel MultiporeHxL-M column, the pore size distribution exhibits a wider maximum range from 0.02 to 0.1 μ m in diameter. This difference in pore size distribution may explain the reason for the inflection phenomenon.

The small ID (4.6 mm) and length (15 cm) of the SuperMultiporeHZ columns reduces solvent consumption and results in quick run times, and offers high throughput capabilities. FIGURE 22 demonstrates that inflection points are no longer observed with semi-micro columns packed from particles prepared by multi-pore technology.

Column: (A) TSKgel SuperMultiporeHZ-M,4.6 mm ID x 15 cm L, x 4; (B) TSKgel SuperHZ4000+3000+2500+2000, 4.6 mm ID x 15 cm L x 4 Mobile phase: THF; Detection: RI; Temperature: 40°C; Injection vol.: 10 µL Samples: acrylic resin

SEC

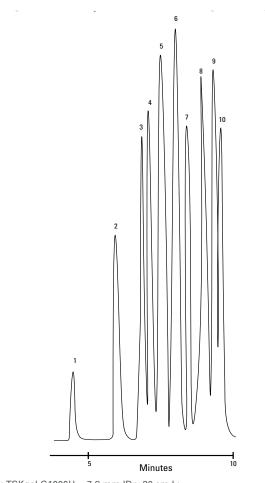
APPLICATIONS OF TSKgel H-TYPE GEL PERMEATION COLUMNS

PHTHALATE ESTERS

FIGURE 23 demonstrates the high efficiency separation on a TSKgel G1000HxL column for low molecular weight phthalate esters. Resolution was close to baseline, even though the molecular weights of the esters differed by less than 50 Da.

PHENOL RESIN

The TSKgel GMHxL-L column has been designed to provide a complete profile for high molecular weight samples that contain low molecular weight additives. The calibration curve for this mixed-bed column is shallow in the low molecular weight range of oligomers. Sample adsorption is not observed.

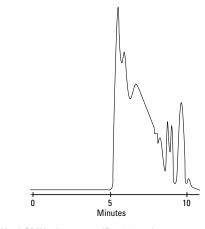

For example, the complete profile of a phenol resin, with high resolution of the low molecular weight components, is shown in FIGURE 24. Other applications for the TSKgel GMHxL-L column include analyses of paint materials, bond and adhesive components and synthetic polymer additives.

FATTY ACIDS

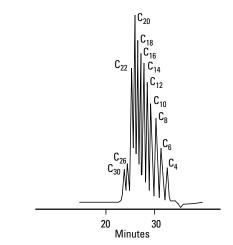
In FIGURE 25, two TSKgel G2000HxL columns in series separate a mixture of fatty acids ranging from C4 to C30.

FIGURE 23

High resolution of phtalate ester on TSKgel G1000HxL



Sample: 1. polystyrene (10,200Da), 2. dioctylphthalate (391Da), 3. dibutylphthalate (278Da), 4.dipropylphthalate (250Da), 5. diethylphthalate (222Da), 6. dimethylphthalate (194Da), 7. n-propylbenzene (120Da), 8. ethylbenzene (116Da), 9. toluene (92Da), 10. benzene (78Da); Elution: THF; Flow Rate: 1.0mL/min; Detection: UV@254nm


FIGURE 24

Column: TSKgel GMHxL-L, 7.8 mm ID x 30 cm L; Sample: phenol resin; Elution: THF; Flow Rate: 1.0 mL/min; Detection: UV @ 254nm

Column: TSKgel G2000HXL, two 7.8 mm ID x 30 cm L in series; Sample: fatty acids; Elution: THF; Flow Rate: 1.0 mL/min; Detection: RI

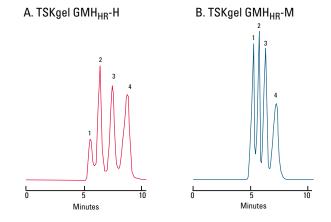
55

APPLICATIONS OF TSKgel H-TYPE GEL PERMEATION COLUMNS

ACRYLIC POLYMER

FIGURE 26 shows the separation of an acrylic polymer on the TSKgel MultiporeHxL-M column compared with two commercially available mixed-bed columns. The arrows illustrate the inflections seen in the chromatograms from mixed-bed columns and the improvement achieved when using the TSKgel MultiporeHxL-M column.

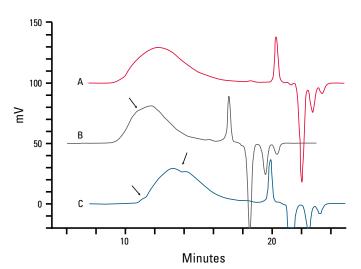
POLYMETHYLMETHACRYLATE

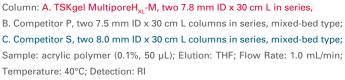

The effect of different pore size distributions in the mixed beds of TSKgel GMHHR-H and TSKgel GMHHR-M is illustrated in FIGURE 27. The TSKgel GMH_{HR}-M produces better resolution in the 8 x 10⁵ to 1 x 10⁴ Da range.

SEMI-MICRO GPC

Semi-micro columns are referred to as such since their dimensions are smaller than conventional columns in terms of internal diameter as well as in length: 4.6 mm or 6 mm ID x 15 cm vs. 7.8 mm ID x 30 cm of conventional GPC columns. As shown in FIGURE 28, a TSKgel SuperMultiporeHZ-N column provides the same or higher resolution at a much shorter analysis time than multiple conventional sized columns linked together.

FIGURE 27 =


Comparison of TSKgel GMHHR-H and -M columns with polymethylmethacrylate standards



Columns: A. TSKgel GMHHR-H, 7.8 mm ID x 30 cm L; B. TSKgel GMHHR-M, 7.8 mm ID x 30 cm L;

Sample: polymethylmethacrylate: 1. 820,000 Da, 2. 67,000 Da, 3. 10,200 Da, 4.1,950Da; Solvent: 5 mmol/L sodium trifluoroacetate in hexafluoroisopropanol; Flow Rate: 1.0 mL/min; Detection: UV@220 nm; Temperature: 40°C

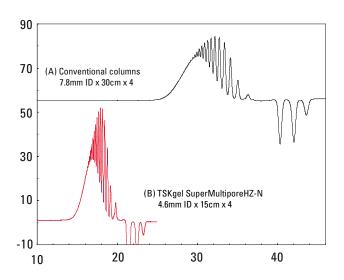

= FIGURE 26 🚃 Separation of acrylic resin by SEC on TSKgel MultiporeHxL-M and mixed-bed type columns

FIGURE 28

PTMEG Analysis on Conventional and semi-micro TSKgel Columns

Columns: A. Conventional columns, 7.8 mm ID x 30 cm L x 4, B. TSKgel Super-MultiporeHZ-N, 4.6 mm ID x 15 cm L x 4;

Mobile phase: THF; Flow rate: (A) 1.0 mL/min (B) 0.35 mL/min; Temperature: 40°C; Injection vol.: (A) 60 µL (B) 10 µL; Sample: poly(teramethylene ether glycol), (PTMEG 650), 10 µg/µL

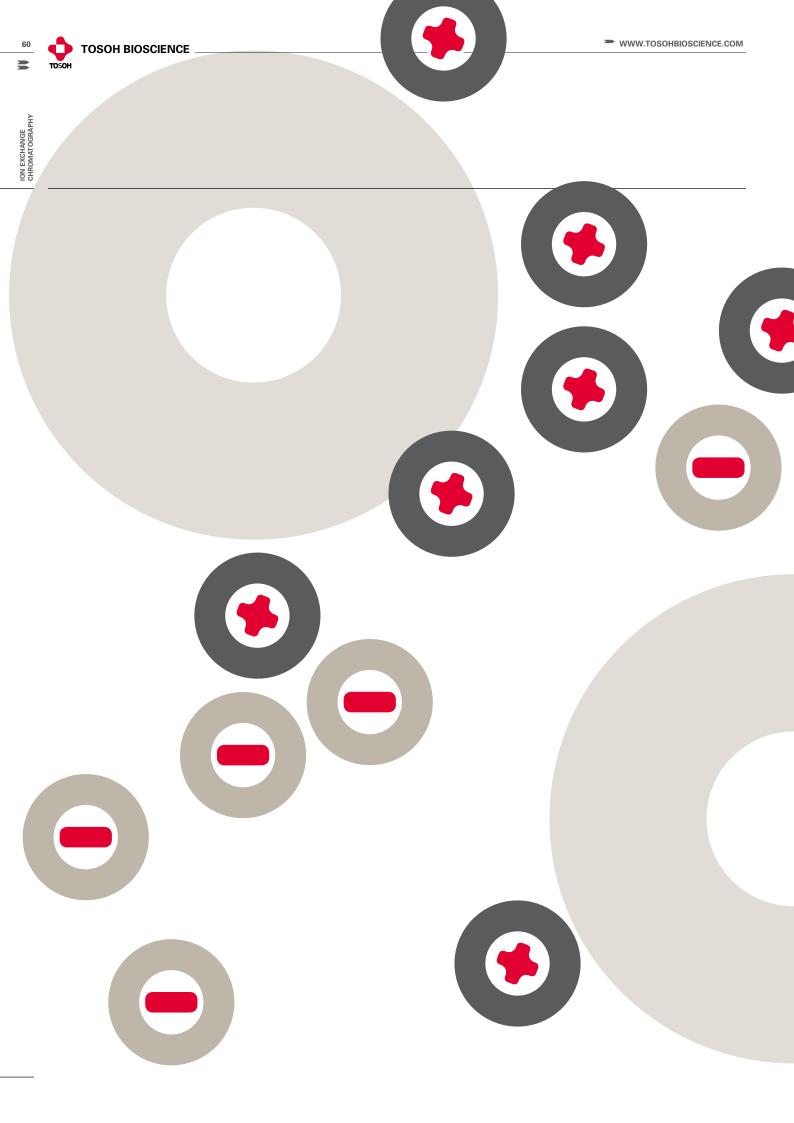
ORDERING INFORMATION

Part #	Description	ID	Length	Particle	Number	<u>Flow rate (m</u>	<u>L/min)</u>	Maximum
	(mm)	(cm)	size (µm)	theoretical	Range	Max.	pressure
					plates			drop (MPa)
	Stainless Steel Columns							
17352	G1000Hhr	7.8	30	5	≥ 16,000	0.5 - 1.0	2.0	5.0
17353	G2000Hhr	7.8	30	5	≥ 16,000	0.5 - 1.0	2.0	5.0
17354	G2500Hhr	7.8	30	5	≥ 16,000	0.5 - 1.0	2.0	5.0
17355	G3000Hhr	7.8	30	5	≥ 16,000	0.5 - 1.0	2.0	5.0
17356	G4000Hhr	7.8	30	5	≥ 16,000	0.5 - 1.0	2.0	5.0
17357	G5000Hhr	7.8	30	5	≥ 16,000	0.5 - 1.0	2.0	5.0
17358	G6000Hhr	7.8	30	5	≥ 16,000	0.5 - 1.0	2.0	5.0
17359	G7000Hhr	7.8	30	5	≥ 16,000	0.5 - 1.0	2.0	5.0
17362	GMHHR-L mixed-bed	7.8	30	5	≥ 16,000	0.5 - 1.0	2.0	5.0
18055	GMHHR-N mixed-bed	7.8	30	5	≥ 16,000	0.5 - 1.0	2.0	5.0
17392	GMHHR-M mixed-bed	7.8	30	5	≥ 16,000	0.5 - 1.0	2.0	5.0
17360	GMHHR-H mixed-bed	7.8	30	5	≥ 16,000	0.5 - 1.0	2.0	5.0
18393	GMHHR-H(S)HT mixed-bed	7.8	30	13	≥ 8,000	5 - 1.0	2.5	2.0
18391	GMHHR-H(30)HT mixed-bed	7.8	30	30	≥ 4,000			
18392	GMHHR-H(20)HT mixed-bed	7.8	30	20	≥ 6,000			
16131	G1000HxL	7.8	30	5	≥ 16,000	0.5 - 1.0	1.0	5.0
16134	G2000HxL	7.8	30	5	≥ 16,000	0.5 - 1.0	1.2	5.0
16135	G2500HxL	7.8	30	5	≥ 16,000	0.5 - 1.0	1.2	5.0
16136	G3000HxL	7.8	30	5	≥ 16,000	0.5 - 1.0	1.2	3.5
16137	G4000H _{XL}	7.8	30	5	≥ 16,000	0.5 - 1.0	1.2	3.5
16138	G5000HxL	7.8	30	9	≥ 14,000	0.5 - 1.0	1.2	1.5
16139	G6000HxL	7.8	30	9	≥ 14,000	0.5 - 1.0	1.2	1.5
16140	G7000HxL	7.8	30	9	≥ 14,000	0.5 - 1.0	1.2	1.5
16141	GMHxL mixed-bed	7.8	30	9	≥ 16,000	0.5 - 1.0	1.2	1.5
07112	GMHxL-HT	7.8	30	13	≥ 5,500	5 - 1.0	1.2	1.5
16652	GMHxL-L mixed-bed	7.8	30	5	≥ 16,000	0.5 - 1.0	1.2	3.5
18403	Multipore HxL-M	7.8	30	5	≥ 16,000	0.5 - 1.0	1.0	3.5
17990	SuperH1000	6.0	15	3	≥ 16,000	0.3 - 0.6	0.8	6.0
17991	SuperH2000	6.0	15	3	≥ 16,000	0.3 - 0.6	0.8	6.0
17992	SuperH2500	6.0	15	3	≥ 16,000	0.3 - 0.6	0.8	6.0
17993	SuperH3000	6.0	15	3	≥ 16,000	0.3 - 0.6	0.8	4.0
17994	SuperH4000	6.0	15	3	≥ 16,000	0.3 - 0.6	0.8	4.0
17995	SuperH5000	6.0	15	3	≥ 16,000	0.3 - 0.6	0.8	4.0
17996	SuperH6000	6.0	15	5	≥ 16,000	0.3 - 0.6	0.8	4.0
17997	SuperH7000	6.0	15	5	≥ 16,000	0.3 - 0.6	0.8	4.0
17998	SuperHM-L	6.0	15	3	≥ 16,000	0.3 - 0.6	0.8	4.0
17999	SuperHM-N	6.0	15	3	≥ 16,000	0.3 - 0.6	0.8	4.0
18000	SuperHM-M	6.0	15	3	≥ 16,000	0.3 - 0.6	0.8	4.0
18001	SuperHM-H	6.0	15	3	≥ 16,000	0.3 - 0.6	0.8	4.0

O

ORDERING INFORMATION

Part #	Description	ID	Length	Particle	Number	<u>Flow rate (i</u>		Maximum
		(mm)	(cm)	size (µm)	theoretical	Range	Max.	pressure
					plates			drop (MPa)
	Stainless Steel Columns	4.0	45		10.000	0.45 0.05	0.4	F 0
19309	TSKgel SuperHZ1000	4.6	15	3	≥ 16,000	0.15 - 0.35	0.4	5.6
19302	TSKgel SuperHZ1000	6.0	15	3	≥ 16,000	0.25 - 0.6	0.7	5.6
19310	TSKgel SuperHZ2000	4.6	15	3	≥ 16,000	0.15 - 0.35	0.4	5.0
19303	TSKgel SuperHZ2000	6.0	15	3	≥ 16,000	0.25 - 0.6	0.7	5.0
19311	TSKgel SuperHZ2500	4.6	15	3	≥ 16,000	0.15 - 0.35	0.4	4.0
19304	TSKgel SuperHZ2500	6.0	15	3	≥ 16,000	0.25 - 0.6	0.7	4.0
19312	TSKgel SuperHZ3000	4.6	15	3	≥ 16,000	0.15 - 0.35	0.4	3.0
19305	TSKgel SuperHZ3000	6.0	15	3	≥ 16,000	0.25 - 0.6	0.7	3.0
19313	TSKgel SuperHZ4000	4.6	15	3	≥ 16,000	0.15 - 0.35	0.4	3.5
19306	TSKgel SuperHZ4000	6.0	15	3	≥ 16,000	0.25 - 0.6	0.7	3.5
19660	TSKgel SuperHZM-N	4.6	15	3	≥ 16,000	0.15 - 0.35	0.4	3.5
19661	TSKgel SuperHZM-N	6.0	15	3	≥ 16,000	0.25 - 0.6	0.7	3.5
19662	TSKgel SuperHZM-M	4.6	15	3 and 5	≥ 16,000	0.15 - 0.35	0.4	2.0
19663	TSKgel SuperHZM-M	6.0	15	3 and 5	≥ 16,000	0.25 - 0.6	0.7	2.0
19664	TSKgel SuperHZM-H	4.6	15	10	≥ 9,000	0.15 - 0.35	0.4	1.0
19665	TSKgel SuperHZM-H	6.0	15	10	≥ 9,000	0.25 - 0.6	0.7	1.0
21488	SuperMultiporeHZ-M	4.6	15	4	≥ 16,000			2.4
21815	SuperMultiporeHZ-N	4.6	15	3	≥ 20,000			4.0
21885	SuperMultiporeHZ-H	4.6	15	6	≥ 11,000			1.0
Guard	columns							
18404	MultiporeH _{xL} -M Guard	6.0	4.0	5	For P/N 1840	03		
07113	Hx∟ Guard Column	6.0	4.0			, through G4000H _{x1}	columns	
13727	Hx∟ Guard Column	6.0	4.0			through GMH _{xL} -L		umns
17368	HHR Guard Column	6.0	4.0	5		000H _{HR} and GMHhr		
17369	HHR Guard Column	6.0	4.0	5		$000H_{HR}$ and and GN		columns
18002	SuperH Guard Column	4.6	3.5	3	For SuperH1		HK , ,	
18003	SuperH Guard Column	4.6	3.5	3		5000-7000 and HM-	L:-N:-M:-H col	umns
18004	SuperH-RC Ref. Column	6.0	15				, , ,	
19314	SuperHZ Guard Column	4.6	2.0	3	For 4.6 mm l	ID SuperHZ1000-40	00 and HZM-N	&-M columns
19668	SuperHZ Guard Column	4.6	2.0	10		ID SuperHZM-H c		
19666	SuperHZ Guard Column	4.6	3.5	3		ID SuperHZ1000-40		&-M columns
19667	SuperHZ Guard Column	4.6	3.5	10		ID SuperHZM-H co		
21489	SuperMP-M Guard	4.6	2.0	4		ultipore HZ-M P/N		
21816	SuperMP-N Guard	4.6	2.0	3		ultipore HZ-N P/N		
21886	SuperMP-H Guard	4.6	2.0	6		ultipore HZ-H P/N		
21000		т.0	2.0	0			21007	


58

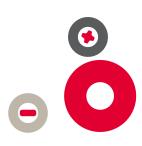
ECOSEC GPC SYSTEM - BASED ON 35 YEARS OF EXPERIENCE IN GPC

EcoSEC is a compact, all-in-one GPC system for fast, high resolution, semi-micro GPC. Comprising a precision solvent delivery system, automatic injector, column oven and a high performance refractive index detector, the design of the system components, their configuration and the optimized flow line provides outstanding performance with minimized dead volume. This makes EcoSEC the ideal instrument to be used in combination with the well respected TSKgel semi-micro GPC/SEC columns. In Europe, EcoSEC is offered in cooperation with Polymer Standards Service (PSS), an acknowledged leader in the field of polymer analysis.

IEC ION EXCHANGE CHROMATOGRAPHY

ANION EXCHANGE

TSKgel Q-STAT TSKgel DNA-STAT TSKgel BioAssist Q TSKgel SuperQ-5PW TSKgel DEAE-5PW TSKgel DEAE-NPR TSKgel DEAE-NPR TSKgel DEAE-2SW TSKgel DEAE-3SW TSKgel Sugar AXI TSKgel Sugar AXG TSKgel SAX


CATION EXCHANGE

TSKgel SP-STAT TSKgel CM-STAT TSKgel BioAssist S TSKgel SP-5PW TSKgel CM-5PW TSKgel SP-2SW TSKgel SP-NPR TSKgel CM-2SW TSKgel CM-3SW TSKgel SCX

TOSOH FACT Tosoh Corporation maintains a large database of HPLC applications utilizing TSKgel columns. Sources for this database include articles in journals citing the use of TSKgel columns by Tosoh customers as well as technical papers and presentations created by Tosoh scientists.

Tosoh Bioscience offers a large literature library consisting of application notes, instruction manuals, product overviews and separation reports.

Both the literature library and the chromatogram database are available on the website at www.tosohbioscience.com.

ION EXCHANGE CHROMATOGRAPHY

INTRODUCTION TO TSKgel ION EXCHANGE COLUMNS

Tosoh Bioscience offers a broad line of high efficiency columns for analysis and isolation of biomolecules by anion and cation exchange chromatography. In either mode of Ion Exchange Chromatography (IEC), the product line contains methacrylate-, silica- and polystyrene-based columns. Proteins, peptides, oligonucleotides and other nucleic acid fragments are typical samples that are analyzed or isolated on TSKgel ion exchange columns. Most of the available chemistries are offered in analytical as well as semi-preparative column formats. Particle sizes range from 2.5 μ m, for fast quality control and process monitoring, to 20 μ m and larger particle sizes utilized in process scale separations.

TSKgel STAT[®] columns are the latest addition to the IEC column line. They are designed for high effiency separation of biomolecules and low molecular weight compounds. TSKgel STAT columns provide superior performance at reduced analysis time. The STAT series encompasses a range of high efficiency anion and cation exchange columns, suitable for various applications from research to quality control.

Also available are a series of ion exchange columns based on a polystyrene matrix. They are most suitable for analyzing small molecular weight sugars, amino acids, individual nucleic acids, and small drug candidates.

PACKING MATERIALS AND CHEMISTRIES

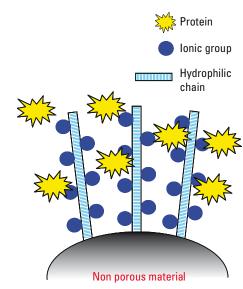
Methacrylate, silica, and polystyrene are used as matrices for the TSKgel line of ion exchange columns. The methacrylate backbone chemistry provides a robust, hydrophilic particle that is suitable as a support for high performance analytical and preparative separations of biomolecules.

The polymethacrylate base resin, G5000PW (5PW), is a 10 µm spherical particle with approximately 1000 Å pores. The base resin is derivatized either with diethylaminoethyl (DEAE), sulfopropyl (SP) or carboxymethyl (CM) functionalities to provide a weak anion, a strong cation, and a weak cation exchanger, respectively. While these chemistries result in standard ion exchangers, the chemistry employed in the manufacturing of TSKgel SuperQ-5PW results in a higher capacity strong anion exchanger by introducing polyamine functional groups. Due to the higher density of anion exchange sites, TSKgel SuperQ-5PW has a smaller effective pore size than TSKgel DEAE-5PW.

FEATURES	BENEFITS				
BioAssist Columns					
 High capacity even for larger proteins (1 million Da) 	 Fewer runs to collect required sample amounts 				
 Unique pore structure provides fast mass transfer 	Sharper peaks improve analysis and isolation				
 Biocompatible PEEK column hardware 	Less sample loss due to adsorption				
• Available in analytical and semi-prep formats	Easy scale-up				
Polymer-Based Ion Exchange Columns					
Methacrylate backbone	 Mechanically and chemically stable (pH 2-12) 				
	 Withstands repeated cleaning with base, and use of organic solvents, denaturants and surfactants 				
Large pore size (1000 Å) (excl. limit for proteins ~ 5,000,000 Da)	Use same column for most biopolymers				
Non porous resin-based (STAT and NPR) columns	 Fast QC analysis and process monitoring 				
 Several columns available in 2 mm ID format 	Reduced solvent consumption and analysis time				
Silica-Based Ion Exchange Columns					
 Smaller pore size (2SW = 125 Å and 3SW = 250 Å) 	 Most suitable for analysing smaller MW samples such as nucleotides, drug candidates, catecholamines and small peptides or proteins 				

INTRODUCTION TO TSKgel ION EXCHANGE COLUMNS

TSKgel BIOASSIST columns are also based on methacrylate particle design technology. TSKgel BioAssist Q contains particles with very large pores (~4000 Å) that are derivatized with a network of polyamine groups. The capacity of TSKgel BioAssist Q has been shown to be high over a wide molecular weight range (up to 1,000,000 Da). TSKgel BioAssist S is packed with particles possessing 1300 Å pores functionalized with sulfopropyl groups. TSKgel BioAssist analytical IEC columns are provided in a 4.6 mm ID x 5 cm L PEEK housing with 7 μ m or 10 μ m particles for the respective S and Q functionalities. Semi-preparative TSKgel BioAssist columns are also available with a 13 μ m particle size packed in a 10 mm ID x 10 cm L housing. The longer length of the semi-preparative column compensates for the increased particle size, resulting in similar resolution to the analytical column.


The methacrylate chemistry also forms the backbone of non-porous resin columns such as TSKgel STAT and NPR columns. Since ratelimiting pore difusion is eliminated with nonporous particles, analysis time is often reduced by as much as 80 % without loss in resolution. Also, recoveries are routinely greater than 90 %.

TSKgel STAT ion exchange columns are packed with 5, 7 or 10 µm hydrophilic non-porous resin particles of which the surface consists of an open access network of multi-layered ion exchange groups (carboxymethyl, sulfopropyl, or quaternary ammonium groups; see FIGURE 1. These relatively large particle sizes, combined with an innovative bonding chemistry, result in columns that enable fast equilibration and analysis of complex biomolecular samples, attributes not found in traditional mono-disperse, non-porous stationary phases.

Specific application needs are addressed by offering various column formats and particle sizes: For fast and ultra-fast analysis (e.g. screening or process monitoring) short 3 mm ID columns are packed with 10 µm particles. For high resolution separations longer columns with 4.6 mm ID are packed with 7 µm particles. The DNA-STAT column is packed with smaller particles (5 µm).

TSKgel DEAE-NPR, SP-NPR and DNA-NPR are packed with 2.5 µm particles. High column efficiency coupled with low sample capacity restricts the application of these columns to fast analysis and micro-scale preparative isolation. The DNA-NPR column is a longer version of the DEAE-NPR column that allows improved resolution of oligonucleotides, including those amplified by PCR. Small guard columns are available to protect the DNA-NPR and DEAE-NPR columns.

In the development of new drug candidates, it is often desirable to use the same backbone chemistry throughout the development process. For that reason, the backbone of the 20 µm and 30 µm particle size TSKgel PW-type resins and the larger particle size TOYOPEARL process media are chemically similar to that used in prepacked TSKgel PW-type column lines. As a result, TSKgel SuperQ-5PW scales directly to TOYOPEARL SuperQ-650. Similarly, the TSKgel DEAE-5PW scales directly to TSKgel DEAE-5PW bulk resins, which in turn scales to TOYOPEARL DEAE-650. The same is true for CM and SP products in the cation exchange column line.

E

TOSOH BIOSCIENCE TOSOH 8

PROPERTIES OF TSKgel ION EXCHANGE COLUMNS

TSKgel ANION EXCHANGE COLUMNS

TSKgel	Matrix*	Particle size (µm)	Pore size (Å)	Functional group	Counter ion	Excl. limit, PEG** (Da)	Capacity (mg BSA/mL)	Small ion capacity meq/mL	рКа	Column hard- ware***
BioAssist Q	pМА	10, 13	~4000	Polyamine	CI	>5,000,000	70	0.1	9.4	PEEK
SuperQ-5PW	pМА	10,13	1000	Trimethyl-amino	CI-	1,000,000	100	> 0.13	12.2	S, G
DEAE-5PW	pМА	10,13, 20	1000	DEAE	CI-	1,000,000	30	0.1	11.5	S, G
Q-STAT	рМА	7,10	~ 0	Trimethyl-amino	CI-	500	20	0.27	10.5	S
DNA-STAT	рМА	5	~ 0	Trimethyl-amino	CI-	500	35	0.27	10.5	S
DEAE-NPR	рМА	2.5	~ 0	DEAE	CI-	500	5	> 0.1	11.2	S
DNA-NPR	рМА	2.5	~ 0	Proprietary	CI0 ₄ -	500	5	> 0.1	11.2	S
DEAE-2SW	Silica	5	125	DEAE	$H_2PO_4^{-}$	10,000	ND	> 0.3	11.2	S
DEAE-3SW	Silica	10	250	DEAE	CI-	30,000	ND	> 0.3	11.2	S
Sugar AXI	PS-DVB	8	60	Trimethyl-amino	HBO ₃ -		ND	> 1.2	12.5	S
Sugar AXG	PS-DVB	10	60	Trimethyl-amino	HBO ₃ -		ND	> 1.2	12.5	S
SAX	PS-DVB	5	60	Trimethyl-amino	CI-		ND	> 1.0	12.5	S

TSKgel CATION EXCHANGE COLUMNS

TSKgel	Matrix*	Particle size (µm)	Pore size (Å)	Functional group	Counter ion	Excl. limit, PEG** (Da)	Capacity (mg/mL)	Small ion capacity meq/mL	рКа	Column hard- ware***
BioAssist S	pМА	7, 13	~1300	Sulfopropyl	Na⁺	~4,000,000	70(1)	0.1	2.4	PEEK
SP-5PW	pМА	10, 13, 20	1000	Sulfopropyl	Na⁺	1,000,000	40 ⁽²⁾	> 0.1	2.3	S, G
CM-5PW	pМА	10, 13	1000	Carboxymethyl	Na⁺	1,000,000	45 ⁽²⁾	> 0.1	4.2	S, G
SP-STAT	pМА	7, 10	~ 0	Sulfopropyl	Na⁺	500	10 ⁽³⁾	> 0.023	4.0	S
CM-STAT	pМА	7, 10	~ 0	Carboxymethyl	Na⁺	500	15 ⁽³⁾	> 0.1	4.9	S
SP-NPR	pМА	2.5	~ 0	Sulfopropyl	Na⁺	500	5 ⁽²⁾	> 0.1	2.3	S
SP-2SW	Silica	5	125	Sulfopropyl	Na⁺	10,000	ND	0.3	2.2	S
CM-2SW	Silica	5	125	Carboxymethyl	Na⁺	10,000	110(2)	> 0.3	4.2	S
CM-3SW	Silica	10	250	Carboxymethyl	Na⁺	30,000	ND	> 0.3	4.2	S
SCX	PS-DVB	5	60	Sulfonic acid	Na⁺, H⁺		ND	> 1.5		S

*pMA = poly methacrylate; PS-DVB = polystyrene-divinylbenzene ** Polyethylene glycol* *

*** PEEK = polyethyletherketone, S = stainless steel, G = glass (1) γ -globulin; (2) hemoglobin; (3) lysozyme

IEC

TSKgel ION EXCHANGE COLUMN SELECTION

Sample type	MW range (Da)	TSKgel column	pH range	
Amino Acids, Peptides and Protei	ns			
Amino acids	< 2000	SAX	1 - 14	
		SCX	1 - 14	
Peptides and small proteins	< 10,000	Q-STAT	3 - 10	
		SP-STAT	3 - 10	
		CM-STAT	3 - 10	
		SCX	1 - 14	
		SP-2SW	2 - 7.5	
		CM-2SW	2 - 7.5	
		DEAE-2SW	2 - 7.5	
Proteins	> 10,000 up to ~ 5,000,000	BioAssist S	2 - 12	
		BioAssist Q	2 - 12	
		Q-STAT	3 - 10	
		SP-5PW	2 - 12	
		DEAE-5PW	2 - 12	
		CM-5PW	2 - 12	
		SP-STAT	3 - 10	
		CM-STAT	3 - 10	
		SP-NPR	2 - 12	
		DEAE-NPR	2 - 12	
		SuperQ-5PW	2 - 12	
Nucleic Acids				
Purines and pyrimidines		DEAE-2SW	2 - 7.5	
		SP-2SW	2 - 7.5	
Nucleosides		SP-2SW	2 - 7.5	
		DEAE-2SW	2 - 7.5	
Nucleotides		Q-/DNA-STAT	3 - 10	
		DEAE-2SW	2 - 7.5	
Oligonucleotides		Q-/DNA-STAT	3 - 10	
		DEAE-5PW	2 - 12	
		DEAE-NPR	2 - 12	
		DNA-NPR	2 - 12	
		SuperQ-5PW	2 - 12	
DNA, RNA, and PCR products		Q-/DNA-STAT	3 - 10	
		DNA-NPR	2 - 12	
		DEAE-NPR	2 - 12	
		DEAE-5PW	2 - 12	
		DEAE-3SW	2 - 7.5	
Other Molecules				
Mono and disaccharides		Sugar AXI, AXG	1 - 14	
		SCX	1 - 14	
		SAX	1 - 14	

EC

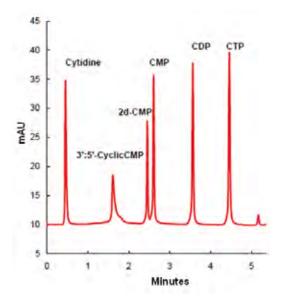
TSKgel ANION EXCHANGE COLUMNS

HIGHLIGHTS

- TSKgel Q- and DNA-STAT columns provide high efficiency separations at short analysis time.
- TSKgel DNA-NPR columns are ideal for PCR fragment analysis.
- TSKgel SuperQ-5PW columns have higher capacity than TSKgel DEAE-5PW due to novel bonding chemistry, effective pore size is smaller for SuperQ-5PW.
- Pore structure and bonding chemistry of TSKgel BioAssist Q columns provide high capacity for small to very large MW proteins and nucleic acids.
- BioAssist columns are packed in 4.6 mm ID or 10 mm ID PEEK hardware. Other columns are available in glass and stainless steel for analytical, semi-preparative and preparative applications.
- Binding capacity for small to medium size proteins on TSKgel DEAE-3SW is roughly double that of the DEAE-5PW due to the smaller pore size and larger surface area.
- Specialty columns for analysis of mono- and disaccharides and sugar alcohols are also available.

APPLICATIONS

NON-POROUS TSKgel STAT ANION EXCHANGE COLUMNS


STAT columns are available in various column formats and particle sizes to perfectly match specific application needs. For fast and ultrafast analysis anion and cation exchange columns in 3 mm ID and 3.5 cm length are packed with 10 µm particles. They are ideally suited for rapid candidate screening or process monitoring. 4.6 mm ID and 10 cm length columns packed with 7 µm particles are designed for high resolution IEC separation for example for the separation of nucleic acids, mAb variants, PEGylated protein or protein aggregates.

The DNA STAT column (4.6 mm ID x 10 cm L) packed with 5 µm Q-type anion exchange resin is ideally suited for the analysis of nucleic acids.

The basic properties of TSkgel STAT Anionexchange columns are summerized in TABLE I.

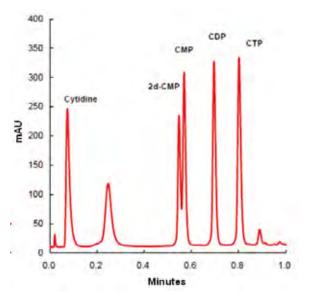

FIGURE 2 compares the high resolution separation of nucleotides on a 10 cm length column to the high throughput separation on a 3.5 cm length column.

FIGURE 2 = High resolution versus high throughput analysis of nucleotides

High resolution:

Column: Prototype Q-STAT, 4.6 mm ID x 10 cm L (7 µm); Eluent: A) 20 mmol/L Tris-HCI (pH8.5) B) 0.5 mol/L NaCl in A (pH8.5) Gradient: 0 to 100% B (10 min.); Flow Rate: 1.5 mL/min. Detection: UV@260 nm

High throughput:

Column: Prototype Q-STAT, 4.6 mm ID x 3.5 cm L (10 µm); Eluent: A) 20 mmol/L Tris-HCI (pH8.5), B) 0.5mol/L NaCl in A (pH8.5) Gradient: 0 to 100% B (1min.); Flow Rate: 4.0 mL/min. Detection: UV@260nm

APPLICATIONS OF TSKgel ANION EXCHANGE COLUMNS

■ TABLE I ...

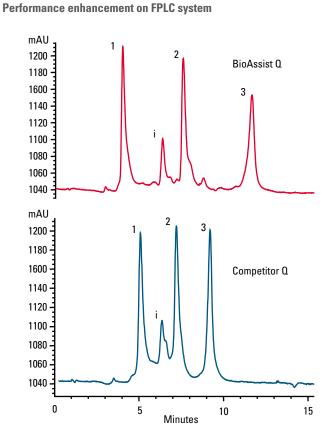
Basic Properties of TSKgel STAT Anion Exchange Columns

Property	TSKgel	D-STAT	TSKgel DNA-STAT			
Base material	Cross-linked hydrophilic polymer (mono-disperse particles)					
Pore size	Non-porous					
Functional group	Quaternary ammonium (same chemistry)					
Particle size	7 μm 10 μm 5 μm					
Column size	4.6 mm ID x 10 cm L	3 mm ID x 3.5 cm L	4.6 mm ID x 10 cm L			
Application	High resolution protein separation	High resolution protein separation	High resolution DNA separations			

POLYMER-BASED ANION EXCHANGE COLUMNS

TSKgel BioAssist Q is suitable for use in systems that are designed for laboratory or semi-preparative applications. FIGURE 3 demonstrates the performance enhancement of TSKgel BioAssist Q over a competitive product when operated side-by-side on an FPLC system. TABLE II shows typical dynamic binding capacities on BioAssist Q relative to competitive products.

TABLE II


Comparison of dynamic binding capacities

	Binding capacity (mg/mL)							
	BioAssist Q	SuperQ	Conv.	Conv.				
Protein		-5PW	Q type prod. A	Q type prod. B				
Thyroglobulin	77.4	22.9	20.2	1.8				
Monoclonal IgG	57.8	43.3	46.7	47.7				
Human Serum Albumin	83.1	78.9	48.2	48.8				
Trypsin Inhibitor	84.3	92.8	51.8	57.8				

Columns:	TSKgel BioAssist Q (4.6 mmID x 1 cm L)
	TSKgel SuperQ-5PW (4.6 mmID x 1 cm L)
	Conventional Q type product A (4.6 mm ID x 1 cm L)
	Conventional Q type product B (4.6 mm ID x 1 cm L)
Solvent:	20 mmol/L Tris-HCl buffer, pH 8.0
Flow rate:	0.38 mL/min
Detection:	UV@280nm)
x T 1	

*The capacity was determined at 10% height of the breakthrough curve at UV 280 nm.

= FIGURE 3

Column: TSKgel BioAssist Q, 4.6 mm ID x 5 cm L (PEEK),

Competitor Q, 5.0 mm ID x 5 cm L; Elution: 30 min linear gradient from 0 to 1 mol/L NaCl in 20 mmol/L sodium phosphate pH 8.0; Flow Rate: 1.0 mL/ min; Detection: UV@280nm; Sample: 1) conalbumin, i) ovalbumin impurity, 2) ovalbumin, 3) trypsin inhibitor

3

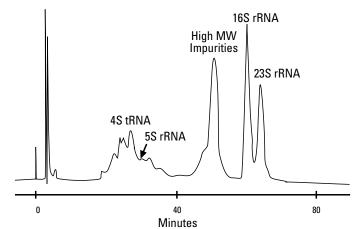
67

EC

APPLICATIONS OF TSKgel ANION EXCHANGE COLUMNS

TSKgel SUPERQ-5PW AND DEAE-5PW

FIGURE 4 shows the analysis of a 16-mer morpholine oligo-nucleotide on TSKgel SuperQ-5PW column using a NaCl gradient in a 10 mmol/L sodium hydroxide mobile phase.


FIGURE 5 shows the fractionation of high molecular weight E. coli RNA on TSKgel DEAE-5PW, effectively utilizing the large 1000 Å pores of this base resin.

TSKgel DEAE-NPR AND DNA-NPR

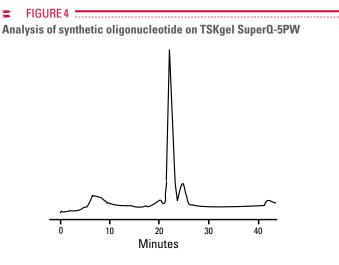
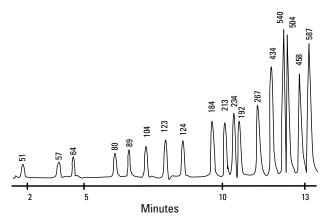

Because of their small (2.5 μ m) particle size, non porous resin (NPR) columns excel in rapid separations of large biomolecules such as DNA digests. A chromatogram of a standard Hae III digest of pBR322 DNA on TSKgel DEAE-NPR, protected by a guard column, is shown in FIGURE 6. To achieve better resolution for PCR fragment analysis we recommend the use of TSKgel DNA-NPR columns, which are 7.5 cm long and 4.6 mm wide, providing higher efficiency in a longer column.

FIGURE 5

Large pore TSKgel DEAE-5PW resolves high MW RNA



Column: TSKgel DEAE-5PW, 6mm ID x 15cm; Sample: total E. coli RNA Elution: 300min linear gradient from 0.3mol/L to 1.0mol/L NaCl in 0.1mol/L Tris-HCl, pH 7.6; Flow Rate:1.0mL/min; Detection: UV@260nm

FIGURE 6

Higher resolution and faster analysis on TSkgel DEAE-NPR

Column: TSKgel SuperQ-5PW, 7.5 mm ID x 7.5 cm L;

Sample: 16-mer morpholine oligonucleotide, AAG AAG AAG AAG AGG GGA G; Sample load: 0.5 O.D. (optical density); Mobile phase: A: 10 mmol/L NaOH; B: 10 mmol/L NaOH with 1 mol/L NaCl; Gradient: Initial: 0 % B, 40min: 50 % B, 41 min: 100 % B, 46min: 100% B; Flow Rate: 1 mL/min; Detection: UV@254nm Column: TSKgel DEAE-NPR, 4.6 mm ID x 3.5 cm L, with guard column, 4.6 mm ID x 0.5 cm L; Sample: Hae III digest of pBR322 DNA, (base pair number for each peak is indicated); Buffer A: 0.02 mol/L Tris-HCl, pH 9.0; Buffer B: Buffer A plus 1.0 mol/L NaCl; Elution: 15 min linear gradient from 48 % to 65 % buffer B; Flow Rate:1.5 mL/min; Pressure: 2000 psi; Temp.: 40 $^{\circ}$ C; Detection: UV@260nm

SILICA-BASED ANION EXCHANGE COLUMNS

TSKgel 2SW-type columns provide high performance separations of small ionic solutes. The increased solubility of the silica backbone above pH 7 limits the use of the TSKgel 2SW-type columns to acidic or neutral mobile phases. This restricts method development and requires special cleaning procedures when compared to the more robust TSKgel 5PW-type polymer-based columns.

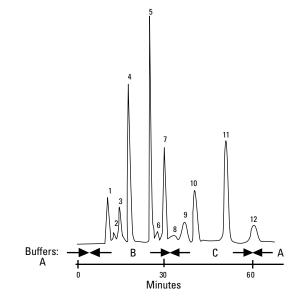
High performance analyses of small anionic species are best performed on small pore silica-based anion exchangers, such as TSKgel DEAE-2SW. This is demonstrated in FIGURE 7. The 250 Å pore size TSKgel DEAE-3SW column is used for separating peptides, low MW proteins and DNA fragments.

SPECIALTY COLUMNS

FIGURE 8

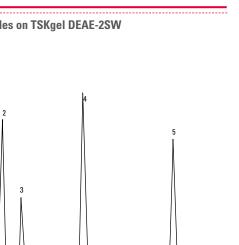
Analyses of monosaccharides, disaccharides, and sugar alcohols can be performed on PS-DVB columns, either by isocratic (TSKgel Sugar AXI) or by gradient (TSKgel Sugar AXG) analysis. Saccharides are retained on Sugar AX columns following the formation of negatively charged complexes with boric acid at alkaline pH. FIGURE 8 shows the separation of twelve mono- and di-saccharides.

The strong anion exchange TSKgel SAX column can be used for the separation of isomerized sugars, alcohols, and low molecular weight organic acids.


FIGURE7 = Separation of nucleotides on TSKgel DEAE-2SW

Column: TSKgel DEAE-2SW, 4.6 mm ID x 25 cm L; Sample: 1. AMP, 2. IMP, 3. GMP, 4.ADP, 5. ATP; Buffer A: ACN in 0.1 mol/L phosphate, pH 3.0, 20/80; Buffer B: ACN in 0.5 mol/L phosphate, pH 3.0, 20/80; Elution: 30 min linear gradient from buffer A to B; Flow Rate: 1.0 mL/min; Detection: UV@260nm

12


Minutes

3 Separation of saccharide mixture on TSKgel Sugar AXG

Column: TSKgel Sugar AXG, 4.6 mm ID x 15 cm L; Sample: disaccharides, 25 mmol/L; monosaccharides, 50 mmol/L: 1. cellobiose, 2. maltose, 3. lactose, 4. rhamnose, 5. lyxose, 6. ribose, 7. mannose, 8. fructose, 9. arabinose, 10. galactose, 11. xylose, 12. glucose; Elution: step gradient: 6 min buffer A, 0.6 mol/L boric acid, pH 7.7; then 27 min buffer B, 0.7 mol/L boric acid, pH 7.25; then 30 min buffer C, 0.7 mol/L boric acid, pH 8.7; Flow Rate: 0.4 mL/min (column and post column reagent solution); Pressure:16 kg/cm²; Temperature: 70ºC (column), 100ºC (post column reactor);

Detection: fluorescence excitation @331 nm, emission@383 nm; PC reagent: 2.5 % 2-cyanoacetamide solution

24

ORDERING INFORMATION

Part #	Description	ID	Length	Particle	Number	<u>Flow rate (i</u>		Maximun
		(mm)	(cm)	size (µm)	theoretical	Range	Max.	pressur drop (MPa
SKae	l glass columns: polymer-based				plates			ui op (ivir a
3061	DEAE-5PW Glass, 1000 Å	5.0	5.0	10	≥ 700	0.5 - 0.8	1.0	1.5
08802	DEAE-5PW Glass, 1000 Å	8.0	7.5	10	≥ 1,300	0.5 - 1.0	1.2	1.0
4016	DEAE-5PW Glass, 1000 Å	20.0	15.0	13	≥ 3,000	4.0 - 6.0	8.0	1.5
8386	SuperQ-5PW Glass, 1000 Å	8.0	7.5	10	≥ 1,300	0.5 - 1.0	1.2	2.0
[SKge]	l PEEK columns: polymer-based							
9685	BioAssist Q, 4000 Å	4.6	5.0	10	≥ 500	0.3 - 1.0	1.2	2.5
21410	BioAssist Q, 4000 Å	10.0	10.0	13	≥ 500	1.0 - 5.0	7.0	2.5
SKge	l Stainless steel columns: polymer-l	based						
1960	Q-STAT, nonporous	3.0	3.5	10	> 200			10.0
1961	Q-STAT, nonporous	4.6	10.0	7	> 2,000			10.0
1962	DNA-STAT, nonporous	4.6	10.0	5	> 4,000			15.0
3075	DEAE-NPR, nonporous	4.6	3.5	2.5	≥ 1,300	1.0 - 1.5	1.6	20.0
8249	DNA-NPR, nonporous	4.6	7.5	2.5	≥ 6,000	0.5 - 1.0	1.5	30.0
8757	DEAE-5PW, 1000 Å	2.0	7.5	10	≥ 1,300	0.05 - 0.10	0.12	1.5
7164	DEAE-5PW, 1000 Å	7.5	7.5	10	≥ 1,300	0.5 - 1.0	1.2	1.5
7574	DEAE-5PW, 1000 Å	21.5	15.0	13	≥ 3,000	4.0 - 6.0	8.0	2.5
7930	DEAE-5PW, 1000 Å	55.0	20.0	20	≥ 1,500	20.0 - 40.0	50.0	0.4
8257	SuperQ-5PW, 1000 Å	7.5	7.5	10	≥ 1,300	0.5 - 1.0	1.2	2.0
8387	SuperQ-5PW, 1000 Å	21.5	15.0	13	≥ 3,000	4.0 - 6.0	8.0	2.0
8639	Sugar AXI, 60 Å	4.6	15.0	8	≥ 3,700	0.2 - 0.4	0.5	3.0
8640	Sugar AXG, 60 Å	4.6	15.0	10	≥ 2,700	0.2 - 0.5	0.5	2.0
)7157	SAX	6.0	15.0	5	≥ 2,000	0.5 - 1.0	1.2	15.0
SKael	l Stainless steel columns: silica-bas	sed						
8761	DEAE-2SW, 125 Å	2.0	25.0	5	≥ 5,000	0.12 - 0.17	0.22	13.0
7168	DEAE-2SW, 125 Å	4.6	25.0	5	≥ 5,000	0.6 - 0.8	1.0	15.0
7163	DEAE-3SW, 250 Å	7.5	7.5	10	≥ 1,300	0.5 - 1.0	1.2	2.0
SKge	l Guard column products							
7088	DEAE-NPR Guard column	4.6	0.5	5	For P/N 13075	j		
8253	DNA-NPR Guard column	4.6	0.5	5	For P/N 18249)		
8388	SuperQ-5PW Guardgel Kit			20	For P/N 18257	1		
7210	DEAE-5PW Guardgel Kit			20	For P/N 07164	ļ		
8806	DEAE-5PW Guardgel Kit, Glass			20	For P/Ns 1306	61 and 08802		
4466	DEAE-5PW Guard column, Glass	20.0	2.0	13	For P/N 14016	j		
6092	DEAE-5PW Prep Guardgel Kit			20	For P/N 07574			
7928	DEAE-5PW Guard column	45.0	5.0	20	For P/N 07930			
7648	DEAE-SW Guardgel Kit		-	20	For P/Ns 0716			
						D guard cartridg		

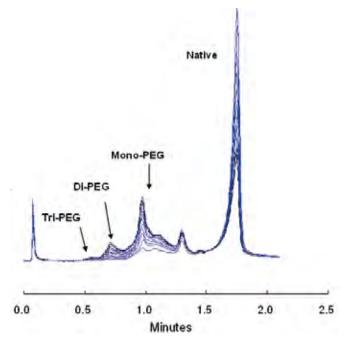
TSKgel CATION EXCHANGE COLUMNS

HIGHLIGHTS -----

- TSKgel SP-STAT and CM-STAT nonporous columns provide high efficiency separation at short analysis time.
- Pore structure and bonding chemistry of TSKgel BioAssist S provides high capacity for medium to large MW proteins.
- BioAssist columns are packed in 4.6 mm ID or 10 mm ID PEEK hardware. Other columns are available in glass and stainless steel for analytical, semi-preparative and preparative applications.
- Binding capacity for small to medium size proteins on TSKgel CM-3SW is approximately double that of TSKgel CM-5PW due to the smaller pore size and larger surface area.
- The TSKgel SP-5PW column is available in 2 mm ID format for LC-MS applications.

APPLICATIONS

TSKgel SP-STAT, CM-STAT


Nonporous TSKgel STAT columns provide fast, high resolution separations at moderate pressures. FIGURE 9 shows the monitoring of a PEGylation reaction of beta-lactoglobulin on a short SP-STAT column.

TSKgel CM-STAT columns are ideally suited to analyze the profile of charge isomers of proteins. Figure 10 shows the analysis profiles for five antibodies and their charge isomers separated on a TSKgel CM-STAT column.

TABLE I Basic Properties of TSKgel STAT Cation Exchange Columns

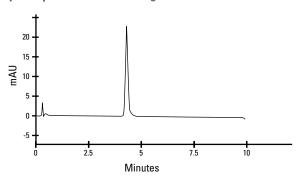
Property	TSKgel S	SP-STAT	TSKgel CM-ST		
Base material	Cross-linke	d hydrophilic parti	polymer (monc cles)	o-disperse	
Pore size	Non-porous				
Functional group	Sulfo	nate	Carboxymethyl		
Particle size	7 µm	10 µm	7 µm	10 µm	
Column size	4.6 mm ID x 10 cm L	3 mm ID x 3.5 cm L	4.6 mm ID x 10 cm L	3 mm ID x 3.5 cm L	
Applica-High resolu- tion protein High throughput pro separation				separation	



Column: Prototype SP-STAT, 4.6 mm ID x 3.5 cm L, (10 um)

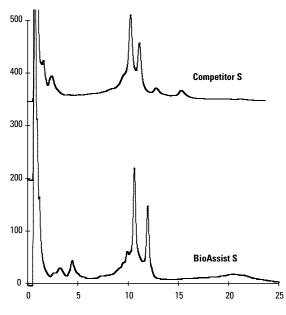
Eluent: A: 20 mmol/L Na acetate buffer pH 4.5, B: 0.8 mol/L NaCl in A pH 4.5; Gradient: 0 to 30% B (2 min); Flow Rate: 4.0 mL/min; Detection: UV@280 nm Real-time analysis of PEGylation reaction (PEG MW=5000) at 5-minutes intervals

Column: TSKgel CM-STAT column (7 μ m, 4.6 mm ID x 10 cm L); Flow rate: 1 mL/min; Mobile phase: A: 20 mM MES (pH 6.0), B: 20 mM MES + 0.5 M NaCl (pH 6.0); Gradient 10% B to 15 % B in 15 minutes; Detection: UV@280 nm, Injection volume 20 μ L


APPLICATIONS - TSKgel CATION EXCHANGE COLUMNS

TSKgel SP-NPR

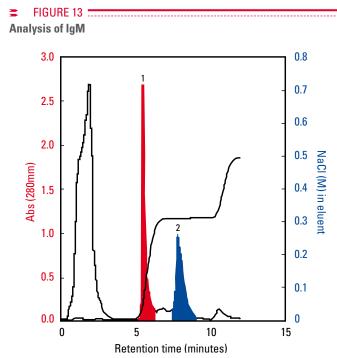
TSKgel SP-NPR columns provide fast separations due to their small (2.5 μ m) spherical particles. A purity check of adeno-associated virus, commonly used in gene therapy research, on a TSKgel SP-NPR column is shown in FIGURE 11. This 10 minute HPLC method replaces an existing assay that took two days.


😑 FIGURE 11 🚃

Analysis of purified AAV with TSKgel SP-NPR

Column: TSKgel SP-NPR, 4.6 mm ID x 3.5 cm L; Sample: purified adenoassociated virus; Elution: A. 50 mmol/L HEPES, 1 mmol/L EDTA, 5 mmol/L MgCl, pH 7.5; B. 50mmol/L HEPES, 1 mmol/L EDTA, 5 mmol/L MgCl, pH 7.5 with 0.5 mol/L NaCl; linear gradient from 20 % to 100 % B in 10 column volumes; Flow Rate: 1 mL/min; Detection: UV@280nm

Columns: TSKgel BioAssist S, 4.6 mm ID x 5 cm L, PEEK


Competitor S 5mm ID x 5cm; Elution: 20 min (TSKgel) or 30 min (Competitor S) linear gradient of NaCl from 0 to 0.5 mol/L in 20 mmol/L sodium phosphate buffer, pH 7.0; Flow Rate: 0.8 mL/min for TSKgel; 1.0 mL/min for Competitor S Detection: UV@280nm; Temperature: 25°C;

Sample: crude bromelain (C4882, Sigma), 1 mg in 100µL

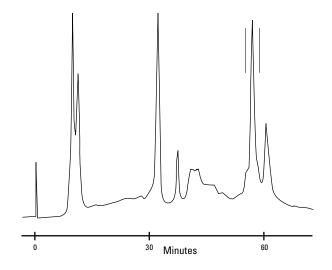
TSKgel BIOASSIST S

Especially designed for the separation of large biomolecules such as antibodies, the very large pores of the TSKgel BioAssist columns offer high capacity and resolution at a low column pressure drop. The polymerization technique used to construct these columns results in a homogenous distribution of ion exchange groups without significantly reducing pore size. TSKgel BioAssist S is suitable for use in systems that are designed for HPLC, laboratory, or semi-preparative applications. The large pore size of the TSKgel BioAssist S resin provides high dynamic capacity due to novel bonded phase design. FIGURE 12 demonstrates these features for the analysis of bromelain, a proteolytic enzyme that is used as a nutritional supplement. Bromelain is a basic glycoprotein with a MW of 33 kDa and a pl of 9.55.

IgM is known to possess unique and beneficial characteristics relative to other immunoglobulin classes; it is a large molecule comprised of five IgG subunits, resulting in a relatively unstable and difficult to purify protein. Unlike single chain antibodies, IgM cannot be purified by Protein A (an affinity material commonly used for its high binding capacity and excellent selectivity for antibodies) due to steric hindrance. Alternative affinity methods have been developed with thiophillic absorbents but these methods often result in low binding capacity. An alternative purification method of IgM by ion exchange chromatography using a TSKgel BioAssist S column was developed. As shown in FIGURE 13 baseline separation of IgM from other contaminants is achieved using a 0.3 mol/L NaCl step gradient after elution of albumin.

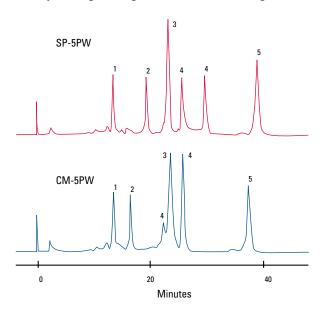
Column: TSKgel BioAssist S, 7 μm, 4.6 mm ID x 5 cm L; Mobile phase: 20 mmol/L sodium phosphate buffer, pH 6.0; Gradient: 0 mol/L - 0.3 mol/L NaCl (5 min), 0.3 mol/L - 0.5 mol/L NaCl (10 min); Flow Rate: 1 mL/min; Detection: UV@280nm; Sample: 500 μL of 9.5 mg/mL IgM in mouse ascites fluid; shaded peaks represent albumin and IgM respectively

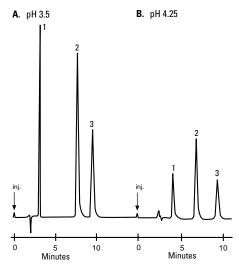
TSKgel SP-5PW AND TSKgel CM-5PW


Differences in selectivity between strong (TSKgel SP-5PW) and weak (TSKgel CM-5PW) cation exchangers are demonstrated in FIGURE 14 which is a separation of globular proteins.

The purification of 200 mg of crude lipoxidase on a 21.5 mm ID TSKgel SP-5PW column is illustrated in FIGURE 15. Scale-up is simplified as only the particle size changes from 10 μ m (7.5 mm ID) to 13 μ m (21.5 mm ID) or 20 μ m (55 mm ID) columns.

TSKgel SP-2SW, CM-2SW AND CM-3SW


Silica-based cation exchangers are typically used in the separation of low molecular weight compounds such as pharmaceuticals, nucleotides, catecholamines, and small peptides. For example, FIGURE 16 shows the separation of nucleosides on TSKgel SP-2SW.

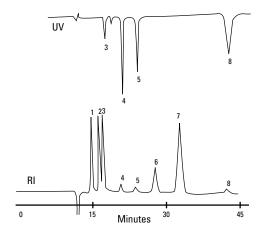

Column: TSKgel SP-5PW, 21.5 mm ID x 15 cm L; Sample: crude lipoxidase, 200 mg; Elution: 120 min linear gradient from 0 mol/L to 0.5 mol/L Na_2SO_4 in 0.02 mol/L acetate, pH 4.5; Flow Rate: 4.0 mL/min; Detection: UV@280 nm; Recovery: Lipoxidase activity collected between the two vertical lines was 84%.

Columns: TSKgel SP-5PW and TSKgel CM-5PW, 7.5 mm ID x 7.5 cm L; Sample: 1. trypsinogen, 2. ribonuclease A, 3. a-chymotrypsinogen, 4. cytochrome C, 5. lysozyme; Elution: 60 min linear gradient from 0 mol/L to 0.5 mol/L NaCl in 0.02 mol/L phosphate, pH 7.0; Flow Rate: 1.0 mL/min; Detection: UV@280 nm FIGURE 16

Separation of nucleosides by ion-exchange chromatography on TSKgel SP-2SW

Column: TSKgel SP-2SW 4.6 mm ID x 25 cm L

Sample: Nucleoside Standards: 1) Guanosine, 2) Cytidine, 3) Adenosine Mobile Phase: A) 0.1 mol/L sodium citrate - phosphoric acid buffer, pH 3.5 B) 0.1 mol/L sodium citrate - acetic acid buffer, pH 4.25 Flow Rate: 0.75 mL/min


APPLICATIONS - TSKgel CATION EXCHANGE COLUMNS

SPECIALTY COLUMNS

Ion exclusion chromatography can be used as an effective method for separating alcohols. An example of a saccharide, organic acid, and alcohol separation is shown in FIGURE 17 on two TSKgel SCX (H^+) columns in series.

= FIGURE 17

Separation of mixture of saccharides, organic acids and alcohols

Column: TSKgel SCX (H⁺), two 7.8 mm ID x 30 cm L (in series); Sample: 1. maltose, 2. glucose, 3. fructose, 4. lactic acid, 5. acetic acid, 6. methanol, 7. ethanol, 8. butyric acid; Elution: 0.05 mol/L HClO₄; Flow Rate: 0.8 mL/min; Detection: UV@210 nm, Refractive Index

IEC

ORDERING INFORMATION

16093 SP-5PW Prep Guardgel Kit

07932 SP-5PW Guard column

07650 CM-SW Guardgel Kit

Part # Description	ID	Length	Particle	Number	Flow rate (i		Maximun
	(<i>mm</i>)	(cm)	size (µm)	theoretical	Range	Max.	pressure
	a			plates			drop (MPa
SKgel Glass columns: polymer-base							
4012 CM-5PW Glass, 1000 Å	20.0	15.0	13	≥ 2,500	4.0 - 6.0	8.0	1.5
13062 SP-5PW Glass, 1000 Å	5.0	5.0	10	≥ 700	0.5 - 0.8	1.0	1.5
08803 SP-5PW Glass, 1000 Å	8.0	7.5	10	≥ 1,300	0.5 - 1.0	1.2	1.0
4017 SP-5PW Glass, 1000 Å	20.0	15.0	13	≥ 3,000	4.0 - 6.0	8.0	1.5
SKgel PEEK columns: polymer-based	d						
9686 BioAssist S, 1300 Å	4.6	5.0	7	≥ 1,500	0.3 - 0.8	1.0	2.5
1411 BioAssist S, 1300 Å	10.0	10.0	13	≥ 3,000	1.0 - 5.0	7.0	2.5
SKgel Stainless Steel Columns: poly	mer-based						
1965 CM-STAT, nonporous	3.0	3.5	10	≥ 200			10.0
1966 CM-STAT, nonporous	4.6	10.0	7	≥ 2,000			10.0
1963 SP-STAT, nonporous	3.0	3.5	10	≥ 200			10.0
1964 SP-STAT, nonporous	4.6	10.0	7	≥ 2,000			10.0
3068 CM-5PW, 1000 Å	7.5	7.5	10	≥ 1,300	0.5 - 1.0	1.2	1.5
8758 SP-5PW, 1000 Å	2.0	7.5	10	≥ 1,300	0.05 - 0.10	0.12	1.0
7161 SP-5PW, 1000 Å	7.5	7.5	10	≥ 1,300	0.5 - 1.0	1.2	1.5
7575 SP-5PW, 1000 Å	21.5	15.0	13	≥ 3,000	4.0 - 6.0	8.0	2.5
7934 SP-5PW, 1000 Å	55.0	20.0	20	≥ 1,500	20.0 - 40.0	50.0	0.4
3076 SP-NPR, nonporous	4.6	3.5	2.5	≥ 1,300	1.0 - 1.5	1.6	20.0
)7156 SCX (Na⁺)	6.0	15.0	5	≥ 2,000	0.5 - 1.0	1.2	15.0
17158 SCX (H⁺)	7.8	30.0	5	≥ 12,000	0.5 - 1.0	1.2	5.0
SKgel Stainless Steel Columns: silic	a-based						
17165 SP-2SW, 125 Å	4.6	25.0	5	≥ 5,000	0.6 - 0.8	1.0	15.0
07167 CM-2SW, 125 Å	4.6	25.0	5	≥ 5,000	0.6 - 0.8	1.0	15.0
17162 CM-3SW, 250 Å	7.5	7.5	10	≥ 1,300	0.5 - 1.0	1.2	2.0
Guard column products							
3069 CM-5PW Guardgel Kit			10	For P/N 13	068		
07211 SP-5PW Guardgel Kit			20	For P/N 07	161		
08807 SP-5PW Guardgel Kit, Glass			20	For P/Ns 1	3062 and 08803		
			00				

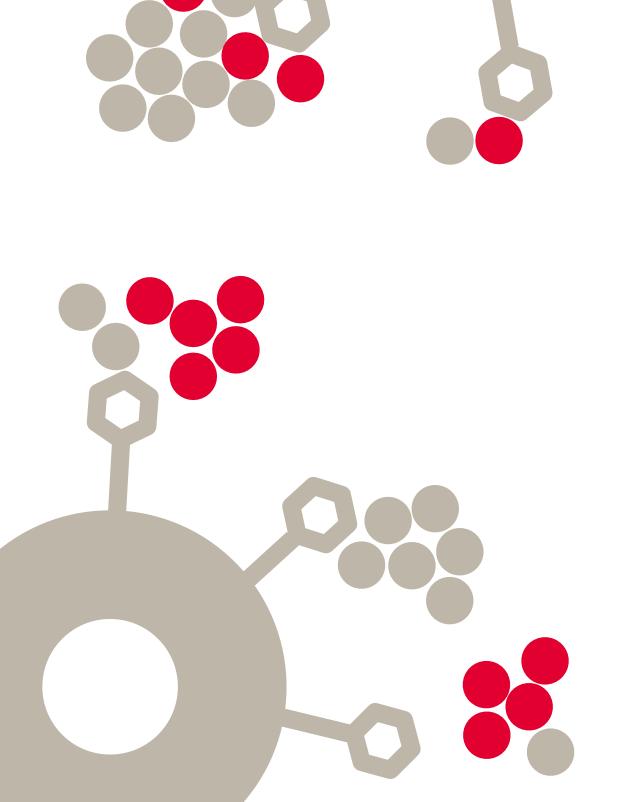
20

20

20

45.0

5.0


For P/N 07575

For P/N 07934

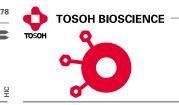
For P/Ns 07167 and 07162

75

HIC **HYDROPHOBIC INTERACTION CHROMATOGRAPHY**

HIC PRODUCTS

TSKgel Ether-5PW TSKgel Phenyl-5PW **TSKgel Butyl-NPR**

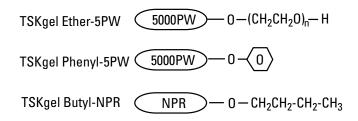

> = TOSOH FACT Tosoh Bioscience provides solutions for today's biological purification needs. In fact, some of the first commercial HIC products were manufactured by Tosoh. We take pride in our ability to design new products based on existing chemistries to solve specific customer applications.

> We encourage you to have a confidential discussion with us about your specific needs. Whether it is a surface modification of an existing product or the creation of a new one, we encourage you to call on us to meet your needs for a customized solution.

77

INTRODUCTION TO TSKgel HIC COLUMNS

Hydrophobic Interaction Chromatography (HIC) is based on the interaction between hydrophobic groups on a protein and a hydrophobic ligand on the solid support. HIC offers a distinct advantage for easily denatured proteins; it can be run using moderate concentrations of ammonium sulfate, which favors the stability of many proteins.


The binding of proteins to a hydrophobic matrix is affected by a number of factors including (1) the type of ligand, (2) the ligand density on the solid support, (3) the backbone material of the matrix, (4) the hydrophobic nature of the protein, and (5) the type of salt used. All of these factors help to make HIC a powerful technique for the separation of biomolecules.

Tosoh Bioscience offers three different HIC column types in analytical format: TSKgel Phenyl-5PW, Ether-5PW and Butyl NPR. TSKgel Phenyl-5PW is also available in preparative column formats. See FIGURE 1 for the structure of the HIC resins.

COLUMN SELECTION

The HIC packing materials are based on the polymeric TSKgel G5000PW size exclusion resin (a hydrophilic gel with an estimated protein exclusion limit of 5,000,000 Da) which is then derivatized with oligoethylene-glycol (Ether-5PW) or phenyl (Phenyl-5PW) groups. Columns, depending on diameter, are packed with 10, 13 or 20 µm particles.

TSKgel ETHER-5PW is less hydrophobic than TSKgel Phenyl-5PW. It displays weaker interaction and thus shorter retention times compared to Phenyl-5PW. TSKgel Ether-5PW is the best choice for the separation of very hydrophobic proteins such as membrane proteins or monoclonal antibodies.

The TSKgel PHENYL-5PW columns were the first commercially available, polymer-based columns for high performance HIC. These columns have been instrumental to the increase in popularity of this technique for analytical, preparative, and process scale separations of biopolymers. FIGURE 2 compares the separation of standard proteins on the Ether, Phenyl, and Butyl supports under similar operating conditions.

The base material of TSKgel Butyl-NPR is of the same chemical composition as the G5000PW base material used to prepare Phenyl-5PW and Ether-5PW. The difference between the two packings is that the G5000PW packing is porous, whereas the base material of the TSKgel Butyl-NPR column consists of spherical 2.5 μm nonporous particles. Nonporous resins (NPR) are typically used for high-speed analytical applications.

TSKgel BUTYL-NPR is the least hydrophobic among the three TSKgel HIC columns and requires a higher salt concentration for binding. TSKgel Butyl-NPR columns provide fast and quantitative HIC, because smaller particles provide higher efficiency. By packing the 2.5 µm nonporous resin particles into shorter columns, typical analysis times are reduced to less than 10 minutes. Pore diffusion is often the rate-limiting step in the overall mass transport of large biomolecules through a porous column. Eliminating the pores provides higher resolution at higher flow rates. Another benefit of NPR resins is excellent mass recovery, allowing quantitation down to nanogram levels. These properties make TSKgel Butyl-NPR the preferred choice for process monitoring and quality control.

TSKgel HIC columns are compatible with water-soluble organic solvents at concentration below 50 % (20 % for Butyl-NPR).

Column selection for the TSKgel HIC columns

Sample	MW range (Da)	TSKgel Column
Peptides	< 10,000	Butyl-NPR
Medium to large proteins	> 10,000	Phenyl-5PW Ether-5PW Butyl-NPR
DNA, RNA, and PCR products	> 500,000	Phenyl-5PW Butyl-NPR
Oligonucleotides	> 10,000	Phenyl-5PW Butyl-NPR

- FEATURES
- Choice of three hydrophobic ligands (ether, phenyl or butyl)
- Rigid polymeric base resin
- Similar chemistry to TOYOPEARL resins
- TSKgel Phenyl-5PW offered in PEEK hardware
- Ether and Phenyl available in 2 mm ID format

- BENEFITS
- Added flexibility during method development
- Wide pH range (2-12) enabling robust cleaning options
- Seamless scalability from analytical to preparative scaley
- Eliminates undesirable interactions with column hardware
- LC-MS applications

SAMPLE CAPACITY

One definition of sample capacity is the amount of pure compound injected onto the column at which the peak width is 10% larger than the peak width under low loading conditions. Using this definition, the capacity of a 7.5 mm ID x 7.5 cm L TSKgel Phenyl-5PW column varies from 0.1 to 1 mg of protein. Resolution and peak width are dependent on sample loading, as shown in FIGURE 3. Therefore, sample loading should be kept within 0.1 - 0.5 mg in order to obtain the highest resolution.

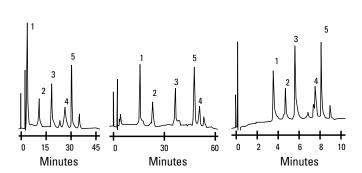
Separations on TSKgel Ether-5PW columns usually take 30 - 60 minutes. 0.5 mg of pure protein can be purified from a 5 - 10 mg crude protein mixture using a 7.5 mm ID x 7.5 cm L column.

Since almost all of the surface area of a porous particle is inside the pores, the capacity of the 4.6 mm ID x 3.5 cm L TSKgel Butyl-NPR column is significantly less than that for the 7.5 mm ID x 7.5 cm L Phenyl-5PW column. Capacities for the Butyl-NPR column are 100 µg for crude sample and 2 µg for pure sample.

CHEMICAL STABILITY

TSKgel 5PW-type HIC columns are physically and chemically stable in water-soluble organic solvents (at < 50% methanol, ethanol, ACN, DMF, DMSO or < 30 % chloroform). Change the solvent gradually by reducing the flow rate (preferably with a gradient) because rapid change may cause degradation of column efficiency. Note: When changing to an organic solvent, reduce the salt concentration to prevent precipitation of the salt on the column. Also, chaotropic agents (urea, SDS, etc.) will reduce the adsorption of biomolecules; therefore, use low levels of these agents (<2 mol/L).

Polymer-based columns are stable when cleaning at alkaline pH. All TSKgel HIC columns can be routinely operated from pH 2-12. Table II shows that the phenyl groups on the TSKgel Phenyl-5PW are stable for more than 10 days upon exposure to 0.5 mol/L NaOH or 0.5 mol/L acetic acid.

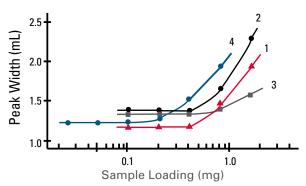

TABLE II

Long-term exposure of TSKgel Phenyl-5PW to acid and base

Acid/base	Phenyl content (mmol/mL - resin)			
	Before exposure	After 10 days exposure		
0.5 mol/L CH ₃ COOH	0.105	0.106		
0.5 mol/L NaOH	0.105	0.104		

FIGURE 2

Comparing conventional and nonporous HIC columns



Column: TSKgel Ether-5PW & TSKgel Phenyl-5PW, 7.5 mm ID x 7.5 cm L TSKgel Butyl-NPR, 4.6 mm ID x 3.5 cm L; Sample: 1. myoglobin,

2. ribonuclease A, 3. lysozyme, 4. α-chymotrypsin, 5. α-chymotrypsinogen; Injection: 5PW-type columns: 100 µL (50-100 µg), NPR-type column: 20 µL (1.5-40 μ g); Elution: 60 min linear gradient from 1.8 mol/L to 0 mol/L (NH₄)₂SO₄ in 0.1 mol/L phosphate buffer, pH 7.0, for 5PW-type columns; 12 min linear gradient from 2.3mol/L to 0 mol/L (NH₄)₂SO₄ in 0.1 mol/L phosphate buffer, pH 7.0 for TSKgel Butyl-NPR; Flow Rate: 1.0mL/min; Detection: UV@280nm

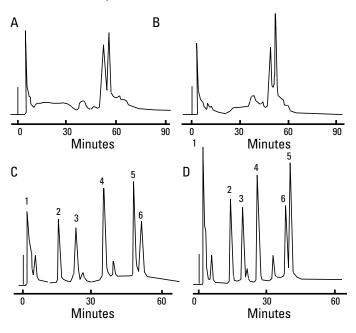
3

FIGURE 3 Dependence of peak width on sample loading in the separation of proteins

Column: TSKgel Phenyl-5PW, 7.5 mm ID x 7.5 cm L; Sample: 1. myoglobin; 2. ribonuclease A; 3. ovalbumin; 4. α-chymotrypsin; concentration: 0.025 % to 1.6 %; Elution: 60 min linear gradient of (NH₄)₂SO₄ from 1.5 mol/L to 0 mol/L in 0.1 mol/L phosphate buffer (pH 7.0); Flow Rate: 0.5 mL/min; Temperature: 25 °C; Detection: UV@280 nm

APPLICATIONS - TSKgel HIC COLUMNS

MODULATION OF SELECTIVITY

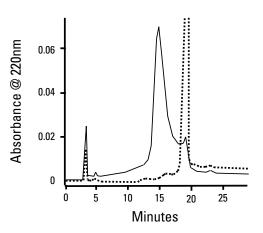

The addition of organic solvents or chaotropic agents in the final buffer can improve separations. However, relative elution positions may change. Therefore, add chaotropic agent and organic solvent in small quantities. See FIGURE 4 for the effect of chaotropic agents and organic solvents on the HIC separation of two different samples.

ANTIBIOTICS

The TSKgel Ether-5PW column was used to determine the relative purity of the antibiotic components C-1027 and C-1027-AG as shown in FIGURE 5. Antibiotic C-1027 is composed of a protein consisting of many hydrophobic and hydroxyamino acids with a non-protein chromophore. Antibiotic C-1027-AG is composed of the hydrophobic and hydroxyamino acids without the chromophore.

FIGURE 4 =

Effect of urea and isopropanol on the separation of commercial lipoxi- Purification of anti-tumor antibiotic dase and a standard protein mixture



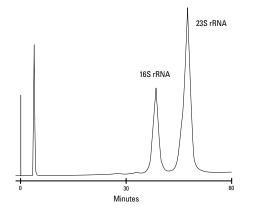
Column: TSKgel Phenyl-5PW, 7.5 mm ID x 7.5 cm L;

Sample: A & B: commercial lipoxidase, C & D: protein mixture: 1. cytochrome C, 2. myoglobin, 3. ribonuclease A, 4. lysozyme, 5. a-chymotrypsinogen, 6. α-chymotrypsin; Elution: A: 60 min linear gradient from 0.1 mol/L phosphate buffer containing 1.5 mol/L (NH $_4$) $_2$ SO $_4$ (pH 7.0) to 0.1 mol/L phosphate buffer (pH 7.0), B: 60 min linear gradient from 0.1 mol/L phosphate buffer containing 1.5mol/L (NH₄)₂SO₄ (pH 7.0) to 0.1 mol/L phosphate buffer containing 2 mol/L urea (pH 7.0), C: 60 min linear gradient from 0.1 mol/L phosphate buffer containing 1.8 mol/L (NH₄)₂SO₄ (pH 7.0) to 0.1 mol/L phosphate buffer (pH 7.0), D: 60min linear gradient from 0.1 mol/L phosphate buffer containing 1.8 mol/L (NH₄)₂SO₄ (pH 7.0) to 0.1 mol/L phosphate buffer (pH 7.0) containing 7% isopropanol; Flow Rate : A & B: 0.5 mL/min; C & D: 1.0 mL/min; Temp.: 25°C; Detection: UV@280nm

FIGURE 5 =

Column: TSKgel Ether-5PW, 7.5 mm ID x 7.5 cm L; Sample: C-1027, C-1027-AG concentration: 1 mg/mL; Injection: 20 µL; Elution: linear gradient from 1.5 mol/L to 0 mol/L (NH,)₂SO₄ in 0.1 mol/L phosphate buffer, pH 7.0; Flow Rate: 0.8 mL/min; Detection: UV@220nm

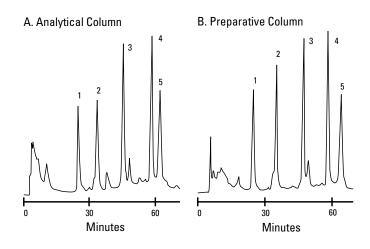
HIC


APPLICATIONS - TSKgel HIC COLUMNS

RNAs

FIGURE 6 illustrates the separation of 16S and 23S ribosomal RNA on a TSKgel Phenyl-5PW column. The approximate molecular weights of these RNAs are 560,000 and 1,100,000 Da, respectively.

= FIGURE 6


Retain large RNAs on TSKgel Phenyl-5PW

Column: TSKgel Phenyl-5PW, 7.5 mm ID x 7.5 cmL; Sample: 16S and 23S rRNA from E. coli, 0.05 mg in 0.1 mL; Elution: 0 min linear gradient from 2 mol/L to 0 mol/L $(NH_4)_2SO_4$ in 0.1mol/L phosphate buffer, pH 7.0; Flow Rate: 60.5 mL/min; Detection:UV@280nm

FIGURE 7

Scale up to preparative separations

Column: TSKgel Phenyl-5PW, A.) 7.5 mm ID x 7.5 cm L and B.) 21.5 mm ID x 15 cmL; Sample: 1. myoglobin, 2. ribonuclease A, 3. lysozyme, 4. α -chymotrypsinogen, 5. α -chymotrypsin; Elution: 60 min linear gradient from 1.8 mol/L to 0 mol/L (NH₄)₂SO₄ in 0.1 mol/L phosphate buffer, pH 7.0; Flow Rate: 0.5 mL/min (7.5 mm ID) or 4 mL/min (21.5 mm ID); Detection: UV@280nm

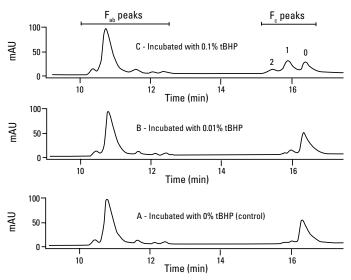
PROTEINS

FIGURE 7 compares the resolution of standard proteins on analytical and preparative TSKgel Phenyl-5PW columns. Different flow rates compensated for the change in particle size and column dimensions. High resolution was obtained on both columns.

ANTIBODY FRAGMENTS

FIGURE 8 shows the separation of Fab and Fc fragments of an antibody on TSKgel Butyl-NPR. The appearance of additional Fc fragments is due to the oxidation of methionine residues by 0.10% t-butylhydroperoxide (tBHP). The numbers above the Fc peaks correspond to the number of oxidized residues in each fragment.

Visit our website:


www.tosohbioscience.com for additional applications, product specifications and literature.

Contact our Technical Service specialists to discuss your specific application: +49 (0)711 13257-57 or techsupport.tbg@tosoh.com.

Please see next page for ordering information.

FIGURE 8

Separation of Fab and Fc fragments on TSKgel Butyl-NPR

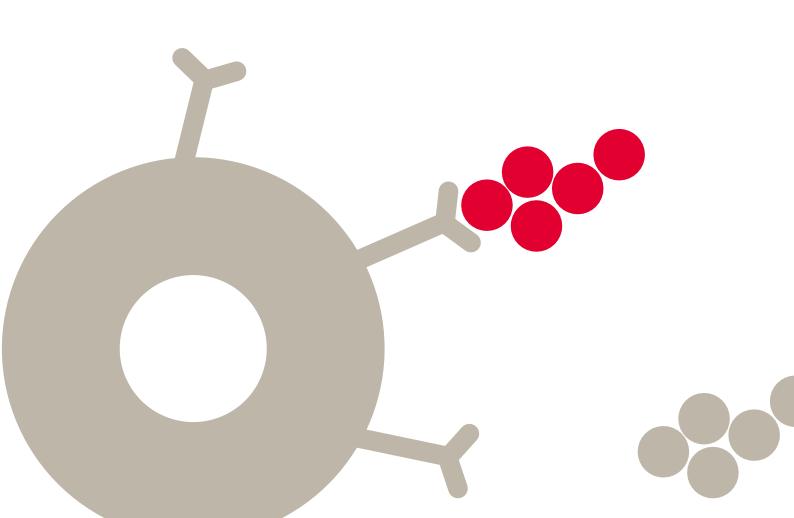
Column: TSKgel Butyl-NPR, 4.6 mm ID x 3.5 cm L; Elution: Buffer A: 2 mol/L $(NH_4)_2SO_4$, 20 mmol/L Tris, pH 7, Buffer B: 20 mmol/L Tris, pH 7; Gradient: linear from 10 % B to 100 % B in 34 minutes; Flow rate:1 mL/min; Temperature: 30°C

82

ЯЮ

ORDERING INFORMATION

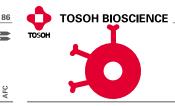
14013 Ether-1 14014 Ether-1 13063 Pheny 13063 Pheny 18063 Pheny 18147 Butyl-1 18148 Pheny 18149 Ether-1 18149 Ether-1 18760 Ether-1 18759 Pheny 07573 Pheny 07656 Pheny 07938 Pheny	er-5PW Glass, 1000 Å er-5PW Glass, 1000 Å enyl-5PW Glass, 1000 Å enyl-5PW Glass, 1000 Å yl-TOYOPEARL PAK 650S, enyl-TOYOPEARL PAK 650S,	(mm) 5.0 8.0 5.0 8.0 8.0	(cm) 5.0 7.5 5.0 7.5	<i>size</i> (μm) 10.0 10.0	<i>theoretical</i> ≥ 600 ≥ 1,000	Range 0.5 - 0.8	Max plates 1.0	pressure drop (MPa) 2.0
14014 Ether-1 13063 Pheny 08804 Pheny 18147 Butyl-1 18148 Pheny 18149 Ether-1 18149 Ether-1 18760 Ether-1 08641 Ether-1 18759 Pheny 07573 Pheny 07656 Pheny 07938 Pheny	er-5PW Glass, 1000 Å er-5PW Glass, 1000 Å enyl-5PW Glass, 1000 Å enyl-5PW Glass, 1000 Å yl-TOYOPEARL PAK 650S,	8.0 5.0 8.0	7.5 5.0	10.0			1.0	2.0
14014 Ether-1 13063 Pheny 08804 Pheny 18147 Butyl-1 18148 Pheny 18149 Ether-1 18149 Ether-1 18760 Ether-1 08641 Ether-1 18759 Pheny 07573 Pheny 07656 Pheny 07938 Pheny	er-5PW Glass, 1000 Å enyl-5PW Glass, 1000 Å enyl-5PW Glass, 1000 Å yl-TOYOPEARL PAK 650S,	8.0 5.0 8.0	7.5 5.0	10.0			1.0	2.0
13063 Pheny 08804 Pheny 18147 Butyl- 18148 Pheny 18149 Ether- TSKgel Stainl 18760 Ether- 08641 Ether- 18759 Pheny 07573 Pheny 07656 Pheny 07938 Pheny	enyl-5PW Glass, 1000 Å enyl-5PW Glass, 1000 Å yl-TOYOPEARL PAK 650S,	5.0 8.0	5.0		> 1 000	0 - 4 0		
08804 Pheny 18147 Butyl- 18148 Pheny 18149 Ether- TSKgel Stainl 18760 Ether- 08641 Ether- 18759 Pheny 07573 Pheny 07656 Pheny 07938 Pheny	nyl-5PW Glass, 1000 Å yl-TOYOPEARL PAK 650S,	8.0			- 1,000	0.5 - 1.0	1.2	2.0
18147 Butyl- 18148 Pheny 18149 Ether- TSKgel Stainl 18760 Ether- 08641 Ether- 18759 Pheny 07573 Pheny 07656 Pheny 07938 Pheny	yI-TOYOPEARL PAK 650S,		75	10.0	≥ 600	0.5 - 0.8	1.0	2.0
18148 Pheny 18149 Ether- TSKgel Stainl 18760 Ether- 08641 Ether- 18759 Pheny 07573 Pheny 07656 Pheny 07938 Pheny	,	8.0	7.0	10.0	≥ 1,000	0.5 - 1.0	1.2	2.0
18149 Ether- TSKgel Stainl 18760 Ether- 08641 Ether- 18759 Pheny 07573 Pheny 07656 Pheny 07938 Pheny	envl-TOYOPFARI PAK 650S		7.5	30.0				
TSKgel Stainl 18760 Ether-1 08641 Ether-1 18759 Pheny 07573 Pheny 07656 Pheny 07938 Pheny		8.0	7.5	30.0				
18760 Ether-1 08641 Ether-1 18759 Pheny 07573 Pheny 07656 Pheny 07938 Pheny	er-TOYOPEARL PAK 650S,	8.0	7.5	30.0				
18760 Ether-3 08641 Ether-4 18759 Pheny 07573 Pheny 07656 Pheny 07938 Pheny	inlass Stool Columns							
08641 Ether- 18759 Pheny 07573 Pheny 07656 Pheny 07938 Pheny	er-5PW, 1000 Å	2.0	7.5	10.0	≥ 1.000	0.05 - 0.1	0.12	0.6
18759 Pheny 07573 Pheny 07656 Pheny 07938 Pheny	er-5PW, 1000 Å	7.5	7.5	10.0	≥ 1,000 ≥ 1,000	0.05 - 0.1	1.2	2.0
07573 Pheny 07656 Pheny 07938 Pheny	enyl-5PW, 1000 Å	2.0	7.5	10.0	≥ 1,000	0.05 - 0.1	0.12	0.8
07656 Pheny 07938 Pheny	enyl-5PW, 1000 Å	7.5	7.5	10.0	≥ 1,000 ≥ 1,000	0.05 - 0.1	1.2	2.0
07938 Pheny	enyl-5PW, 1000 Å	21.5	15.0	13.0	≥ 3,000	4.0 - 6.0	8.0	2.0
,	enyl-5PW, 1000 Å	55.0	20.0	20.0	≥ 1,500	20.0 - 40.0	50.0	0.4
14947 Butyl-	yl-NPR, nonporous	4.6	3.5	2.5	_ 1,000	0.5 - 1.0	1.2	20.0
	yi-ivi ii, iiuiipuiuus							
TSKgel PEEK	yr-wr n, nonporous							
20023 BioAs								


Guard column products		ID	Length	Particle	
		(mm)	(cm)	Size (µm)	
14025	Ether-5PW Guardgel Kit, Glass			20.0	For P/Ns 14013 and 14014
08643	Ether-5PW Guardgel Kit			20.0	For P/N 08641
07652	Phenyl-5PW Guardgel Kit			20.0	For P/N 07573
16095	Phenyl-5PW Prep Guardgel Kit			20.0	For P/N 07656
07936	Phenyl-5PW Guard column	45.0	5.0	20.0	For P/N 07938

HIC

AFC AFFINITY CHROMATOGRAPHY

AFC PRODUCTS


TSKgel BORONATE-5PW
 TSKgel CHELATE-5PW
 TSKgel TRESYL-5PW

TOSOH FACT ______

The Tosoh logo symbolizes the corporate philosophy of Tosoh's vision of the ideal .

The curved lines represent the realization of happiness, reflecting Tosoh's management philosophy of putting people first. The square in the center expresses the advanced nature of Tosoh's technology and also represents the outstanding quality of Tosoh's products. The right-angle cut at the top portrays an image of contributing to society, Tosoh's stance towards the outside world. The red corporate color symbolizes the Tosoh spirit, which guides the ceaseless efforts to realize the ideal.

INTRODUCTION TO TSKgel AFFINITY CHROMATOGRAPHY COLUMNS

The Tosoh Bioscience TSKgel Affinity Chromatography (AFC) column line consists of two group-specific stationary phases: TSKgel BORONATE-5PW AND TSKgel CHELATE-5PW as well as one activated packing material called TSKgel TRESYL-5PW. Affinity chromatography offers the highest level of specificity and selectivity in biomolecular separations and purifications. Tosoh Bioscience supplies a full range of products for analytical, preparative and process scale affinity chromatography.

TSKgel affinity chromatography columns are based on the well-known G5000PW porous resin, which is the basis for high performance size exclusion chromatography columns. The TSKgel 5PW-type resin is a hydrophilic media with 1,000 Å pores and an estimated protein exclusion limit of 5 x 10⁶ Da. Tosoh Bioscience's process scale affinity media are based on the 65 μ m particle size, semi-rigid TOYOPEARL HW-65 resin. Since analytical and semi-preparative columns are made from the same polymer chemistry as the process scale media, seamless scale-up from lab to process scale is achievable. Consult the chapter on bulk media for more information about resins for packing columns to purify medium to large volume samples.

COLUMN SELECTION

 TABLE I lists the ligand concentration, adsorption capacity and the test

 analyte used to determine the capacity of each column type.

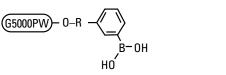
The structures of the functional ligands available from Tosoh Bioscience are shown in **FIGURE 1**. The choice of a specific ligand is dictated by the expected interaction between the sample and column bonded phase. For example, the TSKgel Chelate-5PW column will bind high concentrations of Zn²⁺ ions. If a given protein is known to bind to Zn²⁺ ions, the Chelate-5PW would be a candidate column for the isolation of that target compound.

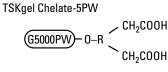
Tosoh Bioscience offers AFC columns in both glass and stainless steel formats. Glass columns are available in 5 mm ID x 5 cm L and 8 mm ID x 7.5 cm L. Stainless steel columns are available as 7.5 mm ID x 7.5 cm L and 6 mm ID x 4 cm L (Tresyl-5PW only). TSKgel BioAssist Chelate is packed in 7.8 mm ID x 5 cm L PEEK hardware. The shipping solvent is distilled water for Boronate-5PW. The Chelate-5PW is shipped in 10 mmol/L acetate buffer, pH 4.5, and the Tresyl-5PW column shipping solvent is acetone.

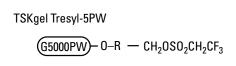
Stainless steel or Pyrex frits are employed in the body of the column endfittings for the metal and glass columns, respectively. The nominal frit size for stainless steel columns is engraved in the end-fittings and all Pyrex® frits are 10 µm nominal pore size.

TABLE I

Characteristics of TSKgel AFC columns


Column packing	Ligand type	Ligand concentration	Adsorption capacity	Sample
Boronate-5PW	<i>m</i> -aminophenyl-boronate	not available	40 µmol/mL resin	sorbitol
Chelate-5PW	iminodiacetic acid	20 µmol/mL resin	not available	not available
Tresyl-5PW	tresyl	ca. 20 µmol/mL resin	>60 mg/g dry resin (coupling capacity)	soybean trypsin inhibitor


FEATURES	BENEFITS
 High size exclusion limit (>5 x 10⁶ Da) 	 Enhanced access of large proteins to affinity ligands
 Small particle size 	 High efficiency for analytical (10 μm) and semi-preparative (13 μm) affinity applications.
 Rigid polymeric base resin 	 Wide pH range (2-12) of the base resin, enabling robust cleaning options
 Stable affinity ligands 	 Long lifetime, solvent compatibility, autoclavable
 Choice of four affinity ligands 	 Application flexibility, scalability from lab to commercial production.
 TSKgel BioAssist Chelate offered in PEEK hardware 	 Eliminates undesirable interactions with column hardware.


■ FIGURE 1

TSKgel affinity chromatography column packings

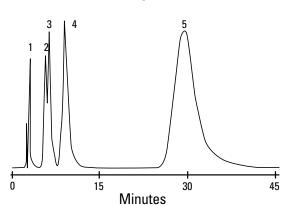
TSKgel Boronate-5PW

Separation columns should be protected with a guard column. Tosoh Bioscience offers a unique Guardgel kit consisting of guard column hardware and gel packing, allowing the user to repack the guard column as required. Guardgel kits are available for most affinity columns, both glass and stainless steel.

TSKgel BORONATE-5PW

Coupling of m-aminophenyl boronate to the TSKgel 5PW-type polymeric support results in a ligand capable of forming a tetrahedral boronate anion under alkaline pH conditions. This anionic structure can bind with 1,2 cis-diol groups such as those found in carbohydrates, carbohydratecontaining compounds, and catecholamines. Interaction between the boronate anion and the 1,2 cis-diol groups is enhanced in the presence of Mg²⁺ ions and is inhibited by amine-containing buffers. Adsorption onto the TSKgel Boronate-5PW takes place in basic buffers such as HEPES and morpholine, while desorption takes place in carbohydrate or amine-containing mobile phases like sorbitol or Tris.

Applications for TSKgel Boronate-5PW include: nucleic acids, nucleotides and nucleosides. This affinity column has also been used to isolate catecholamines and other biomolecules containing the 1,2 cisdiol functionality (FIGURE 2).


TSKgel CHELATE-5PW

TSKgel Chelate-5PW utilizes the ability of iminodiacetic acid (IDA) to chelate ions such as Zn^{2+} , Ni^{2+} and Cu^{2+} . The column is pre-loaded with divalent metal ions by chelation. Peptides and proteins containing histidine residues will normally adsorb to these chelated ions at neutral pH. The retained compounds are then eluted with buffer containing imidazole or glycine.

The key to making successful use of this retention mechanism is the proper selection of metal ions for chelation and the elution buffer to desorb the analytes. In general, Cu^{2+} interacts better with protein; however, resolution is usually enhanced with Zn^{2+} ions. A gradient mobile phase containing increasing imidazole or glycine concentrations is used to elute the retained compounds. A decreasing pH gradient can also be used. Glycine, as well as HEPES buffers, will also elute the metallic ion so column regeneration is necessary. Conversely, imidazole in phosphate buffer will extract the metal ions very slowly, avoiding frequent column regeneration.

= FIGURE 2 _____

Separation of catecholamines on TSKgel Boronate-5PW

Column: TSKgel Boronate-5PW, 7.5 mm ID x 7.5 cm L; Sample: 1. tyrosine, 2. normetanephrine, 3. metanephrine, 4. DOPA, 5. epinephrine; Elution: 0.1 mol/L phosphate buffer, pH 6.5; Flow Rate: 1.0 mL/min; Detection: UV@280 nm

APPLICATIONS OF TSKgel AFFINITY CHROMATOGRAPHY COLUMNS

Applications for TSKgel Chelate-5PW include: immunoglobulins, transferrin, lectins, milk proteins, membrane proteins, and peptides.

In FIGURE 3, the separation of ribonuclease A (bovine) and transferrin (human) are compared on TSKgel Chelate-5PW columns (glass, 5 mm ID x 5 cm L) containing different metal ions.

TSKgel TRESYL-5PW

Unlike other TSKgel affinity columns, the TSKgel Tresyl-5PW (tresyl; 2,2,2-trifluoroethanesulfonyl) requires activation with a user-selected ligand containing amino, thiol, phenol, or imidazole groups. The resulting structure is literally a custom affinity ligand with excellent pH stability and minimal ligand loss due to leaching. TSKgel Tresyl-5PW readily reacts with amino or thiol groups to form stable covalent alkylamines or thioethers.

FIGURE 3 Separation of standard proteins by immobilized metal ion affinity chromatography

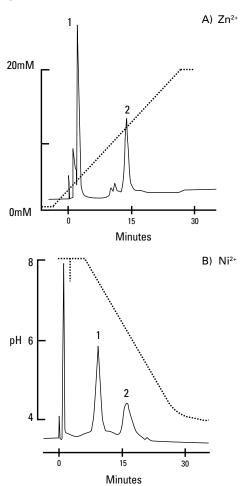
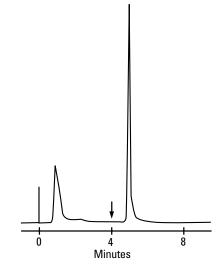



FIGURE 4 _____

Purification of peroxidase on concanavalin A coupled to TSKgel Tresyl-5PW

Column: TSKgel Chelate-5PW, 5 mm ID x 5 cm L; Metal Ion: A) Zn^{2+} and B) Ni²⁺ Sample: 1. ribonuclease A (bovine), 2. transferrin (human)

Elution: A): 30 min linear gradient from 1 mmol/L to 20 mmol/L imidazole in 20 mmol/L HEPES-NaOH buffer, pH 8.0, containing 0.5 mol/L NaCl

B) 30 min linear pH gradient from 20 mmol/L HEPES-MES-acetic acid, pH
 8.0, to 20 mmol/L HEPES-MES-acetic acid, pH
 4.0, both in 0.5mol/L NaCl;
 Flow Rate: 0.8 mL/min; Detection: UV@280nm

Washing step: Wash TSKgel Tresyl-5PW, 6 mm ID x 4 cm L, with DI water; Ligand solution: Dissolve 40mg of concanavalin A in 10 mL of 0.1 mol/L NaHCO₃, pH 8.0, containing 0.5 mol/L NaCl; Coupling step: Recycle the ligand solution overnight through the column at 0.2 mL/min at 25°C; Blocking step: Block residual tresyl groups with 0.1 mol/L Tris-HCl, pH 8.0, at 1.0 mL/min for 1 h at 25°C; Column: TSKgel Tresyl-5PW modified with concanavalin A; Sample: Crude peroxidase, 0.5mg; Binding: 0.05 mol/L acetate buffer, pH 5.0, containing 0.5 mol/L NaCl and 1 mmol/L each of CaCl₂, MnCl₂, and MgCl₂; Elution: Step gradient at 4 min (see arrow on diagram) to 25 mmol/L -methyl-D-glucoside in binding buffer; Flow Rate: 1.0mL/min; Detection: UV@403nm

AFC

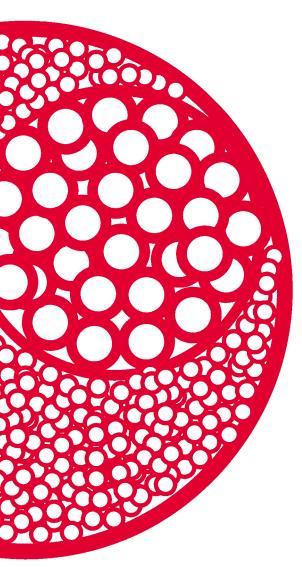
Examples of the wide range of applications using TSKgel Tresyl-5PW include the binding of such ligands as concanavalin A (a lipoprotein lectin that binds to glycoproteins), numerous antibodies and enzymes. The chromatogram in **FIGURE 4** shows the purification of peroxidase by the concanvalin A ligand coupled to the TSKgel Tresyl-5PW affinity support resin.

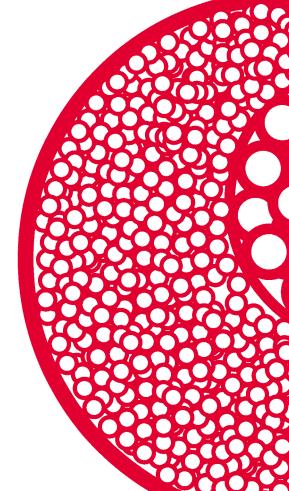
Principal applications for TSKgel Tresyl-5PW include the selective purification of antigens after coupling the appropriate antibody to the solid support. The antibody coupling yield at pH >7.5 is more than 90 %, with the maximum binding occurring at pH 7.5. Antigen adsorption to the antibody ligand is most effective when the antibody concentration is < 2-3 mg/mL of affinity resin. To increase binding capacity, more antibody should be added to the coupling reaction.

However, higher concentrations of antibody can result in steric hindrance, thus lowering the binding capacity of the column. As a general rule, the time required for antibody attachment to the TSKgel Tresyl-5PW column is directly proportional to the antibody concentration. Small amounts of antibody require about 2 hours to complete the cross-linking reaction, whereas it may take 6-7 hours to fully attach an antibody at the concentration of 10 mg/mL-resin.

ORDERING INFORMATION

nns ronate-5PW Glass, 1000 Å elate-5PW Glass, 1000 Å	(mm)	(cm)	size (µm)	theoretical plates	Range	Max.	pressure drop
ronate-5PW Glass, 1000 Å	F 0			plates			
ronate-5PW Glass, 1000 Å	F 0			,			(MPa)
	E O						
alata EDN/ Class 1000 Å	5.0	5.0	10	≥ 500	0.5 - 1.0	1.2	2.0
elate-priv Glass, 1000 A	5.0	5.0	10	≥ 500	0.5 - 0.8	1.0	2.0
inless Steel Columns							
ronate-5PW, 1000 Å	7.5	7.5	10	≥ 1,300	0.5 - 1.0	1.2	1.0
elate-5PW, 1000 Å	7.5	7.5	10	≥ 1,300	0.5 - 1.0	1.2	1.0
syl-5PW, 1000 Å	6.0	4.0	10		0.2 - 0.5	1.0	1.0
esyl-5PW, 1000 Å	7.5	7.5	10		0.5 - 1.0	1.2	1.0
K columns							
Assist Chelate, 1000 Å	7.8	5.0	10	≥ 800	0.5 - 1.0	1.2	1.0
mn products							
	Kit		10	For P/N 14450) and 14449		
-							
-							
r e s r r	onate-5PW, 1000 Å elate-5PW, 1000 Å syl-5PW, 1000 Å syl-5PW, 1000 Å K columns Assist Chelate, 1000 Å nn products	onate-5PW, 1000 Å 7.5 elate-5PW, 1000 Å 7.5 syl-5PW, 1000 Å 6.0 syl-5PW, 1000 Å 7.5 K columns Assist Chelate, 1000 Å 7.8 m products onate-5PW Glass Guardgel Kit onate-5PW Guardgel Kit	onate-5PW, 1000 Å 7.5 7.5 elate-5PW, 1000 Å 7.5 7.5 syl-5PW, 1000 Å 6.0 4.0 syl-5PW, 1000 Å 7.5 7.5 K columns Assist Chelate, 1000 Å 7.8 5.0 m products onate-5PW Glass Guardgel Kit onate-5PW Guardgel Kit	onate-5PW, 1000 Å 7.5 7.5 10 elate-5PW, 1000 Å 7.5 7.5 10 syl-5PW, 1000 Å 6.0 4.0 10 syl-5PW, 1000 Å 7.5 7.5 10 K columns Assist Chelate, 1000 Å 7.8 5.0 10 m products onate-5PW Glass Guardgel Kit 10 onate-5PW Guardgel Kit	onate-5PW, 1000 Å 7.5 7.5 10 ≥ 1,300 elate-5PW, 1000 Å 7.5 7.5 10 ≥ 1,300 syl-5PW, 1000 Å 6.0 4.0 10 syl-5PW, 1000 Å 7.5 7.5 10 K columns 7.5 7.5 10 Assist Chelate, 1000 Å 7.8 5.0 10 ≥ 800 Im products 10 For P/N 14450 onate-5PW Glass Guardgel Kit 10 For P/N 13066	onate-5PW, 1000 Å 7.5 7.5 10 ≥ 1,300 0.5 - 1.0 elate-5PW, 1000 Å 7.5 7.5 10 ≥ 1,300 0.5 - 1.0 syl-5PW, 1000 Å 6.0 4.0 10 0.2 - 0.5 syl-5PW, 1000 Å 7.5 7.5 10 ≥ 800 0.5 - 1.0 K columns Assist Chelate, 1000 Å 7.8 5.0 10 ≥ 800 0.5 - 1.0 m products onate-5PW Glass Guardgel Kit 10 For P/N 14450 and 14449 For P/N 13066	onate-5PW, 1000 Å 7.5 7.5 10 ≥ 1,300 0.5 - 1.0 1.2 elate-5PW, 1000 Å 7.5 7.5 10 ≥ 1,300 0.5 - 1.0 1.2 syl-5PW, 1000 Å 6.0 4.0 10 0.2 - 0.5 1.0 syl-5PW, 1000 Å 7.5 7.5 10 0.5 - 1.0 1.2 syl-5PW, 1000 Å 7.5 7.5 10 0.5 - 1.0 1.2 K columns Assist Chelate, 1000 Å 7.8 5.0 10 ≥ 800 0.5 - 1.0 1.2 m products onate-5PW Glass Guardgel Kit 10 For P/N 14450 and 14449 onate-5PW Guardgel Kit For P/N 13066


Bulk packing


16208 Tresyl-5PW, 2 g dry gel*

* 1 g is approximately 3.5 mL

PROCESS DEVELOPMENT BULK RESINS FOR LAB

PROCESS DEVELOPMENT PRODUCTS

AND BULK RESINS FOR LABORATORY

PROCESS DEVELOPMENT BULK RESINS FOR LAB

PROCESS DEVELOPMENT & RESINS

TOYOSCREEN PROCESS DEVELOPMENT COLUMNS TOYOPEARL AND TSKgel LABPAK TOYOPEARL AND TSKgel BULK RESINS

SCALE PURIFICATION

TOSOH FACT

Tosoh Bioscience offers a range of technical support services to our TSKgel, ToyoScreen, and TOYOPEARL chromatography products.

Whether you need help developing an HPLC assay for the analysis of a new therapeutic target, want to know how to monitor drug metabolites in the human body or need regulatory files to support a submission to the FDA, our technical support specialists will provide assistance in all of these areas and more.

We offer on-site training and application-specific seminars and are committed to providing prompt and courteous service for these and other requests.

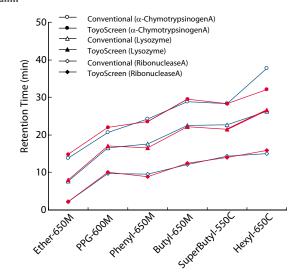
TOYOSCREEN PROCESS DEVELOPMENT COLUMNS

ToyoScreen Process Development columns are easy-to-use, pre-packed columns containing Tosoh Bioscience's most popular TOYOPEARL resins. These columns provide a convenient, low-cost method for the evaluation of TOYOPEARL ligand chemistries. ToyoScreen Process Development columns are available in packages of 6 x 1 mL and 6 x 5 mL volumes for affinity, ion exchange and hydrophobic interaction chromatography. For the new TOYOSCREEN AF-rProtein A-650F package sizes are 5 x 1 mL, 1 x 5 mL and 5 x 5 mL. See the chapter on bulk resins for detailed information on TOYOPEARL resins.

SCREENING

Historically, resin screening was accomplished by manually packing various bulk resins into small columns requiring a significant investment in time and cost. In order to improve the efficiency of resin screening experiments, pre-packed ToyoScreen Process Development columns were developed for the evaluation of different TOYOPEARL resins.

SCALABILITY


Initial results from resin screening and optimization with ToyoScreen columns can accurately predict the separation behavior at larger scales. FIGURE 1 illustrates the similar retention time behavior between 1 mL ToyoScreen columns and con-ventional 7.5 mm ID x 7.5 cm L analytical columns. Additionally, FIGURE 2 depicts a practical antibody scale up in which conditions were set using a 1 mL ToyoScreen column and applied to a 10 mL semi-preparative column with a different inner diameter and length. Similar resolution results are predicted by the following equation:

$${
m Rs} \propto {1 \over {
m dp}} ~{z^{1/2} \over {u^{1/2} \left({
m g} ({
m V_t} - {
m V_o})
ight)^{1/2}}}$$

FEATURES

- Pre-packed columns
- 1 mL and 5 mL bed volume
- Cartridge design
- Ready to connect to ÄKTA, FPLC and HPLC systems
- Six pieces offered in mixed or single chemistry

FIGURE 1 Comparison of selectivity between Toyoscreen and Conventional Column

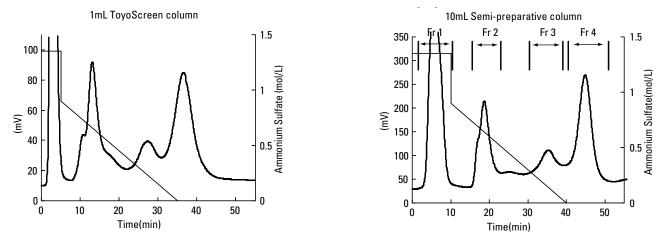
Columns: ToyoScreen (6.4 mm ID x 3 cm L), Conventional Column (7.5 mm ID x 7.5 cm L);

Eluent A: 0.1 mol/L phosphate buffer + 1.8 mol/L sodium sulfate (pH 7.0), Eluent B: 0.1 mol/L phosphate buffer (pH 7.0); Flow Rate: 1 mL/min Gradient: 30 min linear; Inj. Vol.: 50 μ L; Samples: Ribonuclease A, Lysozyme, α -Chymotrypsinogen, 1 mg/mL

Retention time of conventional column was plotted after converting following equation: plotted value = actual measurement value - 4.82

METHOD OPTIMIZATION

Besides the determination of what sticks during resin screening experiments, ToyoScreen Process Development columns can be used to quickly establish optimum elution conditions. Varying pH, salt type, salt gradients and flow rate are common experimental parameters explored. The effect of varying salt type and pH are shown in FIGURES 3 & 4 for anti-TSH in cell culture supernatant on ToyoScreen Phenyl-650M.

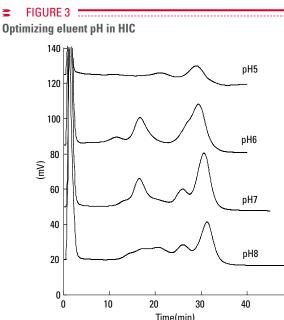

- BENEFITS
- Easy to set up and screen an entire resin series for a specific chromatographic mode
- For sample limited applications with up to milligram purifications
- Provides low cost, efficient alternative to hand packing with bulk resin
- Seamless integration into any platform
- For cost savings in screening or process experiments

PROCESS DEVELOPMENT

APPLICATIONS - TOYOSCREEN PROCESS DEVELOPMENT COLUMNS

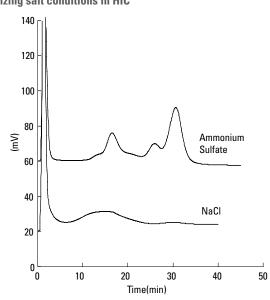
■ FIGURE 2 =

Comparison chromatograms between ToyoScreen and Semi-preparative columns



Packing: TOYOPEARL Phenyl-650M; Eluent: (A) 0.1 mol/L phosphate buffer containing 1.8 mol/L (NH_4)₂SO₄, pH 7.0 (B) 0.1 mol/L phosphate buffer, pH7.0; Sample: Anti-TSH from cell culture supernatant (x4 diluted)

	1 mL ToyoScreen	10 mL Semi-preparative
Column Dimensions:	6.4 mm ID x 3 cm L	14.6 mm ID x 6 cm L
Injection Volume:	500 µL	5000 μL
Flow Rate:	0.5 mL/min; 0.5 CV/min; 93 cm/h	2.5 mL/min; 0.25 CV/min; 90 cm/h
Gradient Profile:	25% B; 0-5 min (isocratic)	25% B; 0-10 min (isocratic)
	50% B: 5 min (step)	50% B: 10 min (step)
	50% to 100% B; 5-35 min (linear)	50% to 100% B; 10-40 min (linear)
Gradient Slope*:	0.06 M/mL	0.012 M/mL


* The gradient slope is the change in ionic strength per unit volume. Gradient volume is the product of flow rate and gradient time.

50

Column: ToyoScreen Phenyl-650M (1 mL); Eluent A: 0.1 mol/L phosphate buffer + 1.8 mol/L ammonium sulfate (pH7.0); Eluent B: 0.1 mol/L phosphate buffer (pH 7.0); Flow Rate: 1 mL/min; Gradient: 30 min linear (30 CV); Inj. Vol.: 200 μ L; Sample: Cell culture supernatant (x4 diluted) (antibody: Anti-TSH)

Column: ToyoScreen Phenyl-650M (1 mL); Eluent A: 0.1 mol/L phosphate buffer containing 1.8 mol/L each salt (pH7.0); Eluent B: 0.1 mol/L phosphate buffer (pH 7.0); Flow Rate: 1 mL/min; Gradient: 30 min linear (30 CV); Inj. Vol.: 200 μ L; Sample: Cell culture supernatant (x 4 diluted) (antibody: Anti-TSH)

BULK

93

TOY Bu

Net Vol Fan No. Iot No e Aarwen

1.10 8

ORDERING INFORMATION

Part #	Description	Package description	Part #	Description	Package description
lon Ex	change	,			
21360	ToyoScreen DEAE-650M, 1 mL	1 mL x 6 ea	21892	ToyoScreen Phenyl-600M, 1 mL	1 mL x 6 ea
1361	ToyoScreen DEAE-650M, 5 mL	5 mL x 6 ea	21893	ToyoScreen Phenyl-600M, 5 mL	5 mL x 6 ea
	,		21374	ToyoScreen Phenyl-650M, 1 mL	1 mL x 6 ea
1362	ToyoScreen SuperQ-650M, 1 mL	1 mL x 6 ea	21375	ToyoScreen Phenyl-650M, 5 mL	5 mL x 6 ea
1363	ToyoScreen SuperQ-650M, 5 mL	5 mL x 6 ea		, , , .	
			21494	ToyoScreen Butyl-600M, 1 mL	1 mL x 6 ea
1364	ToyoScreen QAE-550C, 1 mL	1 mL x 6 ea	21495	ToyoScreen Butyl-600M, 5 mL	5 mL x 6 ea
1365	ToyoScreen QAE-550C, 5 mL	5 mL x 6 ea			
			21376	ToyoScreen Butyl-650M, 1 mL	1 mL x 6 ea
1993	ToyoScreen Q-600C AR, 5 mL	5 mL x 6 ea	21377	ToyoScreen Butyl-650M, 5 mL	5 mL x 6 ea
1992	ToyoScreen Q-600C AR, 1 mL	1 mL x 6 ea	21077		
1002		T III L X O OU	21378	ToyoScreen Hexyl-650C, 1 mL	1 mL x 6 ea
1859	ToyoScreen GigaCap Q-650M, 1 mL	1 mL x 6 ea	21379	ToyoScreen Hexyl-650C, 5 mL	5 mL x 6 ea
1860	ToyoScreen GigaCap Q-650M, 5 mL	5 mL x 6 ea	21070		o me x o ou
1000	loyoociccii olgadap a osolii, sine	5 MEX 0 Cu	21380	ToyoScreen PPG-600M, 1 mL	1 mL x 6 ea
1871	ToyoScreen MegaCapII SP-550EC, 5 mL	5 mL x 6 ea	21381	ToyoScreen PPG-600M, 5 mL	5 mL x 6 ea
1870	ToyoScreen MegaCapil SP-550EC, 1 mL	1 mL x 6 ea	21001		JIILXOGa
1070	Toyoscreen megacaph St -330EC, Thie	T IIIL X U Ed	21382	ToyoScreen SuperButyl-550C, 1 mL	1 mL x 6 ea
1392	ToyoScreen IEC Anion Mix Pack, 1 mL	1mL x 5 Grades	21383	ToyoScreen SuperButyl-550C, 5 mL	5 mL x 6 ea
1002	(DEAE-650M, SuperQ-650M, QAE-550C, GigaC		21303		JIILXUEd
1393	ToyoScreen IEC Anion Mix Pack, 5 mL	5mL x 5 Grades	21398	ToyoScreen HIC Mix Pack, 1 mL	1 mL x 6 Grades x 1 ea
1999			21330	(PPG-600M, Butyl-600M/-650M, Phenyl-60	
	(DEAE-650M, SuperQ-650M, QAE-550C, GigaC	ap u-000101, u-0000 An)	21200		5 mL x 6 Grades x 1 ea
1000	ToweSereen CM GEOM 1ml	1 mL x 6 ea	21399	ToyoScreen HIC Mix Pack, 5 mL	
1366	ToyoScreen CM-650M, 1mL			(PPG-600M, Butyl-600M/-650M, Phenyl-60	UIVI/-650IVI, HEXYI-650C)
1367	ToyoScreen CM-650M, 5mL	5 mL x 6 ea	A 661 14		
1051	Tours Saraan Circo Can CM GEOM 1 ml	1 mL x 6 ea	Affinit	y ToyoScreen AF-rProtein A-650F, 1 mL	1 mL x 5 ea
1951	ToyoScreen GigaCap CM 650M, 1 mL		22809		
1952	ToyoScreen GigaCap CM 650M, 5 mL	5 mL x 6 ea	22810	ToyoScreen AF-rProtein A-650F, 5 mL	5 mL x 1 ea 5 mL x 5 ea
1000	Taus Cara an CD CEOM 1ml	1 mL x 6 ea	22811	ToyoScreen AF-rProtein A-650F, 5 mL	D IIIE X D ea
1368	ToyoScreen SP-650M, 1mL		21200	Tous Serson AF Dive UC GEOM 1 ml	1
1369	ToyoScreen SP-650M, 5mL	5 mL x 6 ea	21386	ToyoScreen AF-Blue HC-650M, 1 mL	1 mL x 6 ea
4070		1 1 0	21387	ToyoScreen AF-Blue HC-650M, 5 mL	5 mL x 6 ea
	ToyoScreen SP-550C, 1mL	1 mL x 6 ea	01004		1 1 0
13/1	ToyoScreen SP-550C, 5mL	5 mL x 6 ea	21384	ToyoScreen AF-Chelate-650M, 1 mL	1 mL x 6 ea
4000	T 0 0: 0 0 0000 4 4		21385	ToyoScreen AF-Chelate-650M, 5 mL	5 mL x 6 ea
1868	ToyoScreen GigaCap S-650M, 1 mL	1 mL x 6 ea			
1869	ToyoScreen GigaCap S 650M, 5 mL	5 mL x 6 ea	21390	ToyoScreen AF-Heparin HC-650M, 1 mL	
			21391	ToyoScreen AF-Heparin HC-650M, 5 mL	5 mL x 6 ea
1394	ToyoScreen IEC Cation Mix Pack, 1 mL	1 mL x 5 Grades			
	(CM-650M, SP-650M, SP-550C, GigaCap CM-6		21388	ToyoScreen AF-Red-650M, 1 mL	1 mL x 6 ea
1395	ToyoScreen IEC Cation Mix Pack, 5 mL	5 mL x 5 Grades	21389	ToyoScreen AF-Red-650M, 5 mL	5 mL x 6 ea
	(CM-650M, SP-650M, SP-550C, GigaCap CM-6	50M /S-650M)			
1396		nL x 6 Grades x 1 ea		creen Accessories	
	(GigaCap Q-650M/ CM-650M/S-650M, SuperQ		21400	ToyoScreen column holder	
1397		nL x 6 Grades x 1 ea			
	(GigaCap Q-650M/ CM-650M/S-650M, SuperQ	-650M, Q-600C AR)			
			ToyoS	creen columns are cartridge columns	. They require
	phobic Interaction			mn holder (P/N 21400) to run the colum	
	ToyoScreen Ether-650M, 1 mL	1 mL x 6 ea	tem.		
1070	ToyoScreen Ether-650M, 5 mL	5 mL x 6 ea			

94

PROCESS DEVELOPMENT

TOYOPEARL AND TSKgel LABPAK MEDIA

TOYOPEARL and TSKgel LabPak media products are small package sizes of TOYOPEARL and TSKgel bulk media products. Typically they contain three or four different ligand types offered for a particular chromatography mode.

They are useful for developmental scientists and engineers who wish to familiarize themselves with the physical properties of resins in different buffer systems:

- slurry and reslurry mechanics
- resin handling during column packing
- mechanical strength relative to other resin backbones
- degree of compressibility

The larger resin amounts in LabPak products allow the packing of wider bore and longer columns than available in the ToyoScreen products. This helps the developmental scientist or engineer to more accurately determine the resin's:

- dynamic binding capacity
- selectivity
- column efficiency
- operating conditions

ORDERING INFORMATION

Part #	Description	Container size	Part #	Description
TSKge IEC	I LABPAKS		TOYOF SEC	PEARL LABPAKS
43380	IEXPAK PW, 20 μm (DEAE-5PW, SP-5PW, SuperQ-5PW)	3 x 25 mL	19820	SECPAK HP, 30 μm (HW-40, 50, 55, 65S)
43280	IEXPAK PW, 30 μm (DEAE-5PW, SP-5PW, SuperQ-5PW)	3 x 25 mL	19821	SECPAK LMW, 45 μm (HW-40, 50, 55F)
HIC			19819	SECPAK HMW, 45 µm
43278	HICPAK PW, 20 µm (Ether-5PW, Phenyl-5PW)	2 x 25 mL		(HW-55, 65, 75F)
			IEC	
43175	HICPAK PW, 30 μm (Ether-5PW, Phenyl-5PW)	2 x 25 mL	19817	IEXPAK HP, 35 μm (DEAE-650S, SP-650S,CM-65

Part #	Description	Container size
TOYOF SEC	PEARL LABPAKS	
	SECPAK HP, 30 μm (HW-40, 50, 55, 65S)	4 x 150 mL
19821	SECPAK LMW, 45 μm (HW-40, 50, 55F)	3 x 150 mL
19819	SECPAK HMW, 45 μm (HW-55, 65, 75F)	3 x 150 mL
IEC		
19817	IEXPAK HP, 35 μm (DEAE-650S, SP-650S,CM-650S, SuperQ-650S)	4 x 25 mL
43210	AIEXPAK, 75/100 μm (GigaCap Ω-650M, SuperΩ-650M, Ω-600C AR)	3 x 100 mL
43220	CIEXPAK, 75/100 µm (GigaCap CM-650M/ S-650M, SP-550C)	3 x 100 mL
HIC		
43150	HICPAK HP, 35 µm (Ether, Phenyl, Butyl-650S)	3 x 25 mL
19806	HICPAK, 65 µm (Ether, Phenyl, Butyl-650M)	3 x 25 mL
43125	HICPAK-C, 100 μm (Phenyl, Butyl, Hexyl-650C)	3 x 25 mL
AFC		
	AFFIPAK ACT, 65 μm (AF-Epoxy, Tresyl-650M)	2 x 5 g*
43410	AFFIPAK, 65 µm (AF-Amino, Carboxyl, Formyl-650 M)	3 x 10mL

*1 g is approximately 3.5 mL

INTRODUCTION TO BULK RESINS FOR LABORATORY PURIFICATION

Tosoh Bioscience offers TOYOPEARL and TSKgel resins (media) in bulk quantities for laboratory-scale applications.

Although the resins can be applied to the purification of small as well as large MW compounds, TOYOPEARL and TSKgel resins are most useful for the separation of peptides, proteins, and oligonucleotides.

The focus of this section is on the use of bulk resins in laboratory applications. Please request the Process Chromatography catalog for information about the use of TOYOPEARL and TSKgel for larger scale separations or visit our website at: www.tosohbioscience.com.

TOYOPEARL BULK RESIN

TOYOPEARL resins are hydrophilic, macroporous media for medium pressure liquid chromatographic applications.

The polymethacrylate backbone structure of TOYOPEARL packings assure excellent pressure/flow characteristics. TOYOPEARL is mechanically stable up to 0,3 MPa, which simplifies column packing by reducing the setup time and improving reproducibility from column to column.

The media is stable over the range of pH 2-12 for normal operating conditions and pH 1-13 for cleaning conditions. In most modes, TOYOPEARL is available in three grades, S (superfine) for highest performance, F (fine) and M (medium) for economical purification, and C (coarse) and EC (extra coarse) for capture. Consult TABLE I for particle sizes associated with the various chemistries and pore sizes.

FEATURES

- chemistries available in Size Exclusion, Ion Exchange, Hydrophobic Interaction and Affinity chromatography
- methacrylate backbone has hydrophilic surface properties
- TSKgel and TOYOPEARL bulk resin product lines feature the same ligand and backbone chemistries from 20 µm to 150 µm particle sizes
- SEC product line available in 5 pore sizes
- IEC, HIC and AFC products are based on 1000 Å, 750 Å and 500 Å pore size particles.
- chemical stability
- thermal stability
- mechanical stability
- column bed stability

- S BENEFITS
- added flexibility during method development
- less non-specific adsorption
- high recovery of proteins, enzymes, glycoproteins
- simplified scale up from laboratory separation to process
- suitable for fractionation of large and small biopolymers
- high capacity and efficient chromatography of small protein and large biopolymers due to unrestricted access of available surface area
- cleanable resins in strong base or acid (pH 1-13)
- compatible with all water soluble organic solvents
- stable in chaotropic agents such as: guanidine hydrochloride, sodium dodecyl sulfate and urea
- autoclavable at 120°C
- wide range of operating temperature (4-60°C)
- linear relationship between flow rate and pressure drop
- constant bed volume over a wide range of salt concentrations

PROCESS DEVELOPMENT

97

PROCESS DEVELOPMENT BULK MEDIA

TOYOPEARL HW-type resins, available in pore sizes ranging from 50 Å to >1000 Å, are employed in size exclusion chromatography (SEC). TOYOPEARL HW-65 and HW-55 resins are used as starting materials for the production of all other functionalized TOYOPEARL resins. The large pore size of HW-65 (1000 Å) allows unhindered access of large proteins to the stationary phase, resulting in faster separation and shorter recycling times.

For predictable results during scale up, TOYOPEARL resins are based on the same chemistry as the prepacked TSKgel columns. This allows for seamless scale up from the laboratory to manufacturing.

TSKgel BULK RESINS

TSKgel resins are larger particle size versions of the chemically equivalent methacrylic packing of analytical-scale TSKgel columns used for protein analysis and purification. The TSKgel resin product line consists of DEAE-5PW, SuperQ-5PW, SP-5PW and SP-3PW resins for ion exchange, Tresyl-5PW resins for afffinity chromatography and Ether-5PW and Phenyl-5PW resins for HIC. TSKgel resins are often employed to simplify scale-up from analytical columns, as only the particle size is different. Their small particle sizes, high degree of crosslinking and high mechanical stability make TSKgel resins the preferred choice for high efficiency purifications.

🕿 TABLE I 🚃

Characteristics of TOYOPEARL and TSKgel media

					Max. pressure
		size (Å)**	Proteins (Da)	pH range	(MPa)
TOYOPEARL HW-40	S (20-40), F (30-60), C (50-100)	50	1 x 10 ² - 1 x 10 ⁴	2–12	0.3
TOYOPEARL HW-50	S (20-40), F (30-60)	125	5 x 10 ² - 8 x 10 ⁴	2-12	0.3
TOYOPEARL HW-55	S (20-40), F (30-60)	500	1 x 10³ - 7 x 10⁵	2-12	0.3
TOYOPEARL HW-65	S (20-40), F (30-60)	1000	4 x 10 ⁴ - 5 x 10 ⁶	2-12	0.3
TOYOPEARL HW-75	S (20-40), F (30-60)	> 1000	5 x 10⁵ - 5 x 10 ⁷	2-12	0.3
TSKgel SuperQ-5PW	20 and 30	1000	< 5 x 10 ⁶	2–12	2.0
TSKgel DEAE-5PW	20 and 30	1000	< 5 x 10 ⁶	2-12	2.0
TSKgel SP-5PW	20 and 30	1000	< 5 x 10 ⁶	2-12	2.0
TSKgel SP-3PW	30	250	< 1 x 10 ⁴	2-12	2.0
TOYOPEARL SuperQ-650	S (20-50), M (40-90), C (50-150)	1000	< 5 x 10 ⁶	2-12	0.3
TOYOPEARL DEAE-650	S (20-50), M (40-90), C (50-150)	1000	< 5 x 10 ⁶	2-12	0.3
TOYOPEARL GigaCap M-650	M (50-100)	1000	< 5 x 10 ⁶	2-12	0.3
TOYOPEARL SP-650	S (20-50), M (40-90), C (50-150)	1000	< 5 x 10 ⁶	2-12	0.3
TOYOPEARL CM-650	S (20-50), M (40-90), C (50-150)	1000	< 5 x 10⁵	2-12	0.3
TOYOPEARL GigaCap S-650	M (50-100)	1000	< 5 x 10⁵	2-12	0.3
TOYOPEARL GigaCap CM-650	M (50-100)	1000	< 5 x 10 ⁶	2–12	0.3
TOYOPEARL QAE-550	C (50-150)	500	< 5 x 10⁵	2–12	0.3
TOYOPEARL Q-600C AR	C (50-150)	750	< 2.5 x 10 ⁶	2-12	0.3
TOYOPEARL SP-550	C (50-150)	500	< 5 x 10⁵	2–12	0.3
TOYOPEARL MegaCap II SP-550	EC (100-300)	500	<5 x 10⁵	2–12	0.3
TSKgel Ether-5PW	20 and 30	1000	< 5 x 10 ⁶	2–12	2.0
TSKgel Phenyl-5PW	20 and 30	1000	< 5 x 10 ⁶	2–12	2.0
TOYOPEARL Ether-650	S (20-50), M (40-90)	1000	< 5 x 10⁵	2-12	0.3
TOYOPEARL PPG-600		750	< 5 x 10⁵	2-12	0.3
TOYOPEARL Phenyl-600	M (40-90)	750	< 5 x 10 ⁶	2–12	0.3
,	M (40-90)	750	< 5 x 10 ⁶		0.3
	S (20-50), M (40-90), C (50-150)	1000	< 5 x 10 ⁶	2–12	0.3
-		1000		2–12	0.3
		500			0.3
					0.3
					1.0
		1000		2–12	0.3
					0.3
					0.3
					0.3
					0.3
					0.3
					0.3
					0.3
					0.3
					0.3
		OYOPEARL Phenyl-600 M (40-90) OYOPEARL Butyl-600 M (40-90) OYOPEARL Phenyl-650 S (20-50), M (40-90), C (50-150) OYOPEARL Butyl-650 S (20-50), M (40-90), C (50-150) OYOPEARL Super Butyl-550 C (50-150) OYOPEARL Hexyl-650 C (50-150) OYOPEARL Hexyl-650 C (50-150) OYOPEARL AF-Chelate-650 M (40-90) OYOPEARL AF-Chelate-650 M (40-90) OYOPEARL AF-Tresyl-650 M (40-90) OYOPEARL AF-Formyl-650 M (40-90) OYOPEARL AF-Carboxy-650 M (40-90) OYOPEARL AF-Carboxy-650 M (40-90) OYOPEARL AF-Red-650 M (40-90)	OYOPEARL Phenyl-600 M (40-90) 750 OYOPEARL Butyl-600 M (40-90) 750 OYOPEARL Phenyl-650 S (20-50), M (40-90), C (50-150) 1000 OYOPEARL Butyl-650 S (20-50), M (40-90), C (50-150) 1000 OYOPEARL Super Butyl-550 C (50-150) 500 OYOPEARL Hexyl-650 C (50-150) 1000 OYOPEARL Hexyl-650 C (50-150) 1000 OYOPEARL Hexyl-650 C (50-150) 1000 OYOPEARL AF-Chelate-650 M (40-90) 1000 OYOPEARL AF-Tresyl-650 M (40-90) 1000 OYOPEARL AF-Formyl-650 M (40-90) 1000 OYOPEARL AF-Formyl-650 M (40-90) 1000 OYOPEARL AF-Carboxy-650 M (40-90) 1000 OYOPEARL AF-Red-650 M (40-90) 1000	OYOPEARL Phenyl-600 M (40-90) 750 < 5 x 10 ⁶ OYOPEARL Butyl-600 M (40-90) 750 < 5 x 10 ⁶ OYOPEARL Phenyl-650 S (20-50), M (40-90), C (50-150) 1000 < 5 x 10 ⁶ OYOPEARL Butyl-650 S (20-50), M (40-90), C (50-150) 1000 < 5 x 10 ⁶ OYOPEARL Super Butyl-550 C (50-150) 1000 < 5 x 10 ⁶ OYOPEARL Hexyl-650 C (50-150) 1000 < 5 x 10 ⁶ OYOPEARL Hexyl-650 C (50-150) 1000 < 5 x 10 ⁶ OYOPEARL Hexyl-650 C (50-150) 1000 < 5 x 10 ⁶ OYOPEARL Protein A F (30-60) 1000 < 5 x 10 ⁶ OYOPEARL AF-Tresyl-650 M (40-90) 1000 < 5 x 10 ⁶ OYOPEARL AF-Tresyl-650 M (40-90) 1000 < 5 x 10 ⁶ OYOPEARL AF-Formyl-650 M (40-90) 1000 < 5 x 10 ⁶ OYOPEARL AF-Formyl-650 M (40-90) 1000 < 5 x 10 ⁶ OYOPEARL AF-Carboxy-650 M (40-90) 1000 < 5 x 10 ⁶ OYOPEARL AF-Carboxy-650 M (40-90) 1000	OYOPEARL Phenyl-600 M (40-90) 750 < 5 x 10° 2-12 OYOPEARL Butyl-600 M (40-90) 750 < 5 x 10°

** nominal values; Pore size of base matrix

TOYOPEARL BULK RESINS FOR SEC

HIGHLIGHTS

TOSOH

BULK

- Pore sizes ranging from 50 Å to >1000 Å
- Three particle sizes (S, F, C)
- HW-40 is ideal for desalting applications
- Easy to pack in semi-preparative and process scale columns

Size exclusion chromatography (SEC) is a common technique for separating molecules based on their apparent molecular size. For nearly twenty-five years, TOYOPEARL SEC bulk resins, with their macroporous packings, have been used for laboratory and production-scale biochromatography.

TOYOPEARL SEC resins are semi-rigid, spherical polymethacrylate beads. The resins have hydrophilic surfaces due to the presence of ether and hydroxyl groups. The numerous surface hydroxyl groups provide attachment points for other functional groups and ligands. TABLE II provides an overview of the TOYOPEARL SEC resin product line including corresponding molecular weight ranges of common target samples. Calibration curves of the TOYOPEARL HW-type resins determined with globular proteins are presented in FIGURE 5.

Ordering information for quantities <1 L is provided at the end of this section. For larger quantities, please contact customer service at +49 (0)711 13257 0. LABPAK kits are also available in popular combinations of TOYOPEARL media. See the page 99 for additional information.

Applications: proteins, peptides, amino acids, nucleic acids, and small molecular weight molecules. Please visit our website: www. tosohbioscience.com for extensive data on applications.

10⁷ HW-75 10⁶ HW-65 10⁵ HW-55 MW (Da) 10⁴ HW-50 HW-40 10³ 10² 10 0.30 0.40 0.60 0.80 0.50 0.70 V_{e}/V_{c}

Column: 22 mm ID x 30 cm L; Sample: protein standards; Elution: 0.06 mol/L phosphate buffer, pH 7, in 0.06 mol/L KCl; Legend: Ve=elution volume, Vc=column volume

TABLE II

Properties and molecular weight separation ranges for TOYOPEARL HW-type resins (HW = Hydrophilic, Water-compatible polymeric base resins)

			Molecula	ar weight of sample (Da)	
TOYOPEARL resin	Particle size (µm)	Pore size (Å)	PEG and PEO	Dextrans	Globular proteins
HW-40S HW-40F HW-40C	20 - 40 30 - 60 50 - 100	50 50 50	1 x 10 ² - 3 x 10 ³	1 x 10² - 7 x 10³	1 x 10 ² - 1 x 10 ⁴
HW-50S HW-50F	20 - 40 30 - 60	125 125	1 x 10 ² - 1.8 x 10 ⁴	5 X 10 ² - 2 x 10 ⁴	5 x 10 ² - 8 x 10 ⁴
HW-55S HW-55F	20 - 40 30 - 60	500 500	1 x 10² - 1.5 x 10⁵	1 x 10 ³ - 2 x 10 ⁵	1 x 10 ³ - 7 x 10 ⁵
HW-65S HW-65F	20 - 40 30 - 60	1000 1000	5 x 10 ² - 1 x 10 ⁶	1 x 10 ⁴ - 1 x 10 ⁶	4 x 10 ⁴ - 5 x 10 ⁶
HW-75F	30 - 60	>1000	4 x 10 ³ - 5 X 10 ⁶	1 x 10 ⁵ - 1 x 10 ⁷	5 x 10 ⁵ - 5 x 10 ⁷

FIGURE 5

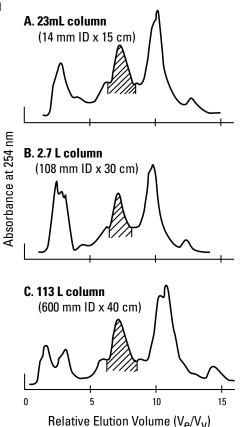
=

Calibration curves for globular proteins on TOYOPEARL HW-type resins

PROCESS DEVELOPMENT

PROCESS

2


TOYOPEARL AND TSKgel BULK RESINS FOR IEC

HIGHLIGHTS

- TOYOPEARL GigaCap[®]S-650M, CM-650M and Q-650M resins are high capacity ion exchange resins featuring high dynamic binding capacities for both small molecules like insulin and larger proteins like monoclonal antibodies.
- > Weak and strong anion and cation exchangers are offered in both product lines.
- Standard 1,000 Å pore size for large biopolymers and 500 Å pore size packing for optimal binding capacity are available.
- High efficiency TSKgel resins scale up directly from TSKgel analytical columns.

For separating mixtures of biomolecules, Ion Exchange Chromatography (IEC) is known for its high resolution and high capacity. It is very effective in the initial capture step of a chromatography process. IEC is also useful for further purification and/or polishing. It can complement other chromatographic techniques in the design of an economical downstream purification process. IEC is often used as a purification step before HIC, SEC, and RPC. IEC will also purify and concentrate the target molecule in one step when the sample is diluted. This also allows it to be used as a concentration step after SEC.

FIGURE 6 = Process scale-up purification of β -galactosidase with TOYOPEARL DEAE-650M

Column: TOYOPEARL DEAE-650 M; Sample: 1% β-galactosidase: A. 8 mL; B. 1L; C. 40L Elution: linear gradient from 0.03 to 0.10 mol/L NaCl in 0.014 mol/L Tris-HCI (pH7.7); Flow rate: A. 1.0 mL/min; B. 60 mL/min; C. 1.6 L/min; Linear velocity: A. 39 cm/h; B. 40 cm/h; C. 34 cm/h; Detection: UV@254nm

A 5000-fold scale-up of a α -galactosidase enzyme purification was accomplished using TOYOPEARL DEAE-650M. The chromatograms in FIGURE 6 demonstrate the excellent scale up characteristics of TOYOPEARL ion exchange media. Gradient slope and particle diameter remained unchanged. Linear velocity was reduced by 15% in the largest scale separation, and resolution actually improved relative to the smallest scale separation. This may be partly attributed to increased bed height and the slower linear velocity. Although the column volume was increased in part by increasing the bed height, the principal change in column volume was a result of the greater column diameter (1.4 cm to 60 cm L). This example illustrates how TOYOPEARL media can be conveniently scaled up from laboratory to production scale applications using the same particle size if desired.

Because the correct choice of an ion exchange resin can have a considerable impact on the economy of a process, Tosoh Bioscience provides many product options in both TOYOPEARL and TSKgel IEC bulk polymeric media. See TABLE III for a complete listing of available particle sizes. Ordering information for quantities < 1 L is provided at the end of this section.

TABLE III **TOYOPEARL and TSKgel Ion Exchange Resins**

Description	Type*	Part. size (µm)
Anion Exchange		
TSKgel DEAE-5PW	W	20, 30
TSKgel SuperQ-5PW	S	20, 30
TOYOPEARL DEAE-650	W	35, 65, 100
TOYOPEARL SuperQ-650	S	35, 65, 100
TOYOPEARL QAE-550	S	100
TOYOPEARL Q-600 AR	S	100
TOYOPEARL GigaCap Q-650M	S	75
Cation Exchange		
TSKgel SP-5PW	S	20, 30
TSKgel SP-3PW	S	30
TOYOPEARL CM-650	W	35, 65, 100
TOYOPEARL GigaCap CM-650M	W	75
TOYOPEARL SP-550	S	100
TOYOPEARL SP-650	S	35, 65, 100
TOYOPEARL MegaCap II SP-550EC	S	100-300
TOYOPEARL GigaCap S-650M	S	75

*W = Weak; S = Strong

TOYOPEARL AND TSKgel BULK RESINS FOR HIC

HIGHLIGHTS

TOSOH

BULK

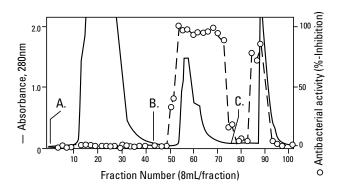
- A wide range of hydrophobicities is suitable for most proteins.
- Standard 1,000 Å pore size is available for large biopolymers, and three Butyl pore sizes (500 Å, 750 Å and 1,000 Å) are available.
- TOYOPEARL "600M" series of HIC resins with optimized pore size of 750 Å for antibody separation. Phenyl-600M and Butyl-600M with highest DBCs for IgG.
- Seamless scale up from high efficiency TSKgel 5PW-type analytical columns is possible.

Hydrophobic Interaction Chromatography (HIC) has become a popular mode of chromatography for the purification of biopolymers at analytical as well as preparative scale. This is accomplished by the interaction of hydrophobic ligands on the base matrix with the hydrophobic areas located on the surface of proteins. HIC is an excellent complement to size exclusion and ion exchange chromatography in difficult separations, particularly those where the contaminants are of similar pl or molecular weight. It is often preferred over reversed phase chromatography when preservation of biological activity of the protein is of utmost importance.

Tosoh Bioscience offers both the TSKgel and TOYOPEARL resin product lines for HIC. See TABLE IV for a complete listing of functionalities. Each product line has similar backbone chemistry. TSKgel 5PW-type resins possess a higher degree of cross-linking than the corresponding TOYOPEARL resins. Additionally, choices in particle size are offered to match the desired resolution and throughput. A variety of HIC bulk media are offered as LABPAK kits in quantities < 1 L and in a combination of resins with varying functionalities. Additionally, HIC media are available in ToyoScreen process development columns for convenient scouting and methods development.

Ordering information for quantities < 1 L is provided at the end of this section.

APPLICATIONS: proteins with similar chemical or structural properties, plasmids and monoclonal antibodies. See FIGURE 7 for separation of large glycoprotein from crude extract on TOYOPEARL Butyl-650S. Please visit our website: www.tosohbioscience.com for extensive application data.


TOYOPEARL and **TSKgel HIC** Resins

Description	Strength*	Part. size grades (µm)
TSKgel Ether-5PW	1	20, 30
TOYOPEARL Ether-650	1	35, 65
TOYOPEARL PPG-600	2	65, 100
TSKgel Phenyl-5PW	3	20, 30
TOYOPEARL Phenyl-650	3	35, 65, 100
TOYOPEARL Phenyl-600	4	65
TOYOPEARL Butyl-600	4	65
TOYOPEARL Butyl-650	4	35, 65, 100
TOYOPEARL SuperButyl-550	4	100
TOYOPEARL Hexyl-650	5	100

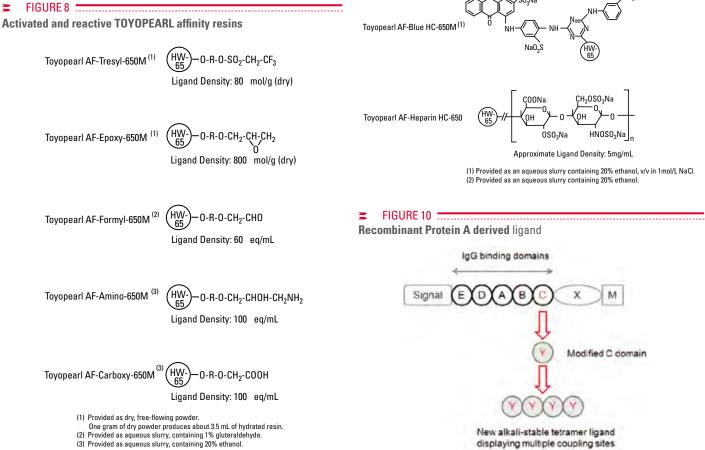
* Relative scale: 1 = least hydrophobic, 5 = most hydrophobic.

Large glycoprotein purified on TOYOPEARL Butyl-650S

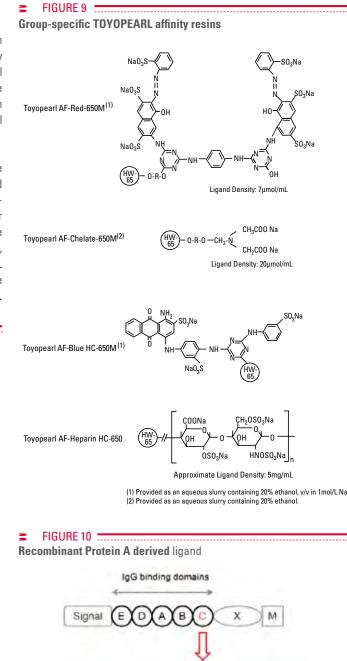
FIGURE 7

Column: TOYOPEARL Butyl-650S, 22 mm ID x 26 cm L; Sample: crude protein from sea hare *Aplysia kurodai*; Elution: multi-step $(NH_4)_2SO_4$ in 50 mmol/L phosphate buffer, pH 7.0 A. load & wash: 40 % saturated $(NH_4)_2SO_4$ B. 20% saturated $(NH_4)_2SO_4$ C. 0% saturated $(NH_4)_2SO_4$

PROCESS DEVELOPMENT


TOYOPEARL RESINS FOR AFC

HIGHLIGHTS


- → New AF-rProtein A-650F resin for antibody purification.
- Active, reactive and group specific resins
- Provided in standard 1000 Å pore size for high capacity of large biopolymers.
- TOYOPEARL AF-Blue HC-650M is available for albumin and interferon applications with the lowest leaching blue.
- TOYOPEARL AF-Heparin HC-650M high capacity resin exhibits an Antithrombin III dynamic capacity of 4 mg/mL.

TOYOPEARL media for Affinity Chromatography (AFC) are based on TOYOPEARL HW-65 resin and functionalized with either chemically active groups or group-specific ligands. Resins with activated functional groups are ready for direct coupling of a protein or other ligand, while resins with reactive groups employ coupling or reductive amination to achieve covalent bonding. The 1000 Å pore size common to all TOYOPEARL affinity resins accommodates proteins up to 5,000,000 Da.

In general, TOYOPEARL AF-Tresyl-650M and AF-Formyl-650M are recommended for coupling proteins, while AF-Epoxy-650M is suited for coupling low molecular weight ligands. TOYOPEARL AF-Amino-650M and TOYOPEARL AF-Carboxy-650M may be used in either application. TOYOPEARL AF-Heparin HC-650M interacts with a wide range of biomolecules including plasma components, lipoprotein lipase, collagenase, and DNA polymerase. The structures of TOYOPEARL activated and reactive ligands are given in FIGURE 8, while the structures of TOYOPEARL group-specific ligands are listed in FIGURE 9.

TOYOPEARL AF-rProtein A-650F is designed for efficient and robust purification of antibodies. The newly developed recombinant protein A ligand is derived from one of the IgG-binding domains of the staphylococcus aureus protein A (FIGURE 10). TOYOPEARL AF-rProtein-650F binds human and mouse immunoglobulin G with high binding capacity and at high flow rates. This reduces column and buffer volumes and allows fast loading procedures.

BULF

102

BULK

ORDERING INFORMATION

Part # Description	Container size	Part #	Description	Container size
A. Size Exclusion Chromatography		19804	DEAE-650S, 35 μm	25 mL
		07472	DEAE-650S, 35 μm	250 mL
OYOPEARL Bulk Resins		43201	DEAE-650M, 65 μm	100 mL
9809 HW-40S, 30 μm	150 mL	07473	DEAE-650M, 65 μm	250 mL
7451 HW-40S, 30 μm	250 mL	07988	DEAE-650C, 100 μm	250 mL
9808 HW-40F, 45 μm	150 mL	21854	GigaCap Q-650M, 75 μm	100 mL
7448 HW-40F, 45 μm	500 mL	21855	GigaCap Q-650M, 75 μm	250 mL
9807 HW-40C, 75 μm	150 mL			
7449 HW-40C, 75 μm	500 mL	C. Cati	on Exchange Chromatography	
9811 HW-50S, 30µm	150 mL			
7455 HW-50S, 30µm	250 mL	TSKge	l Bulk Resins	
9810 HW-50F, 45 μm	150 mL	43382	SP-5PW (20)	25 mL
7453 HW-50F, 45 μm	500 mL	14714	SP-5PW (20)	250 mL
9813 HW-55S, 30 µm	150 mL	43282	SP-5PW (30)	25 mL
7459 HW-55S, 30 µm	250 mL		SP-5PW (30)	250 mL
9812 HW-55F, 45 μm	150 mL		SP-3PW (30)	25 mL
7457 HW-55F, 45 μm	500 mL		SP-3PW (30)	250 mL
9815 HW-65S, 30 μm	150 mL			
7467 HW-65S, 30 µm	250 mL	TOYOP	PEARL Bulk Resins	
9814 HW-65F, 45 μm	150 mL	19803	CM-650S, 35 µm	25 mL
7465 HW-65F, 45 μm	500 mL	07474		250 mL
1481 HW-65C, 75 μm	150mL	43203	CM-650M, 65 µm	100 mL
7466 HW-65C, 75 μm	500mL	07475	CM-650M, 65 µm	250 mL
9816 HW-75F, 45 μm	150 mL	07991	CM-650C, 100 µm	250 mL
7469 HW-75F, 45 μm	500 mL	19822		25 mL
		08437	SP-650S, 35 µm	250 mL
. Anion Exchange Chromatography		43202		100 mL
· · · · · · · · · · · · · · · · · · ·		07997	SP-650M, 65 µm	250 mL
SKgel Bulk Resins		07994	SP-650C, 100 µm	250 mL
3381 DEAE-5PW (20)	25 mL	43272	SP-550C, 100 μm	100 mL
4710 DEAE-5PW (20)	250 mL	14028	SP-550C, 100 μm	250 mL
3281 DEAE-5PW (30)	25 mL	21804	MegaCap II SP-550EC, 100-300 µm	100 mL
4712 DEAE-5PW (30)	250 mL	21805	MegaCap II SP-550EC, 100-300 µm	250 mL
3383 SuperQ-5PW (20)	25 mL	21833	GigaCap S-650M, 75 µm	100 mL
8535 SuperQ-5PW (20)	250 mL	21834	GigaCap S-650M, 75 µm	250 mL
3283 SuperQ-5PW (30)	25 mL		GigaCap CM-650M, 75 µm	100 mL
8536 SuperQ-5PW (30)	250 mL	21947	GigaCap CM-650M, 75 µm	250 mL
OYOPEARL Bulk Resins				
9823 SuperQ-650S, 35 μm	25 mL			
7223 SuperQ-650S, 35 μm	250 mL			
3205 SuperQ-650M, 65 μm	100 mL			
7227 SuperQ-650M, 65 μm	250 mL			
3275 SuperQ-650C, 100 µm	100 mL			
7231 SuperQ-650C, 100 µm	250 mL			
3271 ΩAE-550C, 100 μm	100 mL			
4026 QAE-550C, 100 μm	250 mL			
1985 Q-600C AR, 100 μm - NEW -	100 mL			
1986 Q-600C AR, 100 μm - NEW -	250 mL			

PROCESS DEVELOPMENT BULK RESINS

-ORDERING INFORMATION

<i>Part #</i> D. Hydr	Description ophobic Interaction Chromatogra	Container size aphy	Part # E. Affi	Description nity Chromatography	Container size
TSKgel	Bulk Resins		TSKgel	Bulk Resins	
43276	Ether-5PW (20)	25 mL	16208	Tresyl-5PW (10)	2 g*
16052	Ether-5PW (20)	250 mL			-
			TOYOPI	EARL Bulk Resins	
43176	Ether-5PW (30)	25 mL	22803	AF-rProtein A-650F, 45 µm - NEW -	10 mL
16050	Ether-5PW (30)	250 mL	22804	AF-rProtein A-650F, 45 µm - NEW -	25 mL
			22805	AF-rProtein A-650F, 45 µm - NEW -	100 mL
43277	Phenyl-5PW (20)	25 mL			
14718	Phenyl-5PW (20)	250 mL	43411	AF-Amino-650M, 65 µm	10 mL
	,		08002	AF-Amino-650M, 65 µm	25 mL
43177	Phenyl-5PW (30)	25 mL	08039	AF-Amino-650M, 65 µm	100 mL
14720	Phenyl-5PW (30)	250 mL			
			19688	AF-Blue HC-650M,65 µm	25 mL
ТОУОРЕ	ARL Bulk Resins		19689	AF-Blue HC-650M, 65 µm	100 mL
19955	SuperButyl-550C, 100 µm	25 mL		· · · _ · · · · · · · · · · · · · · · ·	
19956	SuperButyl-550C, 100 µm	100 mL	43412	AF-Carboxy-650M, 65 µm	10 mL
	eaper.2aty. 0000, 100 p		08006	AF-Carboxy-650M, 65 μm	25 mL
21448	Butyl-600Μ, 65 μm	25 mL	08041	AF-Carboxy-650M, 65 μm	100 mL
21449	Butyl-600M, 65 μm	100 mL	00011		100 1112
43153	Butyl-650S, 35 µm	25 mL	14475	AF-Chelate-650M, 65 µm	25 mL
07476	Butyl-650S, 35 µm	100 mL	19800	AF-Chelate-650M, 65 µm	100 mL
19802	Butyl-650M, 65 μm	25 mL	10000		100 1112
07477	Butyl-650M, 65 μm	100 mL	43402	AF-Epoxy-650M, 65 μm	5 g*
43127	Butyl-650C, 100 μm	25 mL	08000	AF-Epoxy-650M, 65 μm	10 g*
07478	Butyl-650C, 100 µm	100 mL	08038	AF-Epoxy-650M, 65 μm	100 g*
07 170		100 1112	00000		100 g
43151	Ether-650S, 35 µm	25 mL	43413	AF-Formyl-650M, 65 µm	10 mL
16172	Ether-650S, 35 µm	100 mL	08004	AF-Formyl-650M, 65 µm	25 mL
19805	Ether-650M , 65 µm	25 mL	08040	AF-Formyl-650M, 65 μm	100 mL
16173	Ether-650M , 65 µm	100 mL	00010		100 IIIE
10170		100 mL	20030	AF-Heparin-HC-650M, 65 µm	10 mL
44465	Hexyl-650C, 100 µm	25 mL	20030	AF-Heparin-HC-650M, 65 µm	100 mL
19026	Hexyl-650C, 100 µm	100 mL	20001		TOOTILE
15020	Πεχγ-0500, 100 μπ	TOOTIL	08651	AF-Red-650M, 65 µm	25 mL
21887	Phenyl-600M, 65 µm	25 mL	19801	AF-Red-650M, 65 µm	100 mL
21888	Phenyl-600M, 65 µm	100 mL	13001	Αι -πεά-05000, 05 μπ	100 IIIL
43152	Phenyl-650S, 35 μm	25 mL	14471	AF-Tresyl-650M, 65 µm	5 g*
14477	Phenyl-650S, 35 μm	100 mL	14471	AF-Tresyl-650M, 65 μm	100 g*
19818	Phenyl-650M, 65 μm	25 mL	14472	Αι - Περγι-υσυίνι, υσ μπι	100 y
14478	Phenyl-650M, 65 µm	100 mL	*1 a ic (approximately 3.5 mL	
43126	Phenyl-650C, 100 μm	25 mL	1 9 15 0		
43120 14479	Phenyl-650C, 100 μm	100 mL			
144/J	τηθηγι-0500, του μπ	IUU IIIL			
21301	PPG-600Μ, 65 μm	25 mL			
21301	PPG-600M, 65 μm	100 mL			
21302	ι ι α-ουσίνι, ου μπ	IUU IIIL			

103

TOSOH BIOSCIENCE

APPENDIX

APPENDIX A

ABOUT TSKgel COLUMNS, THEIR MAINTENANCE AND SCALE UP

Tosoh Corporation closely monitors all stages of the manufacturing process for chromatographic media that is used to pack TSKgel columns. Packing materials are produced in large gel batches which must pass stringent quality control specifications for particle size distribution, pore size distribution, pore volume, and surface area. After producing the particles, each lot is then used to prepare multiple batches of bonded phase by attaching the appropriate ligand. Each gel lot is again tested to ensure that it meets the specifications for parameters such as ligand density, retention, selectivity, etc.

TSKgel columns are designed for general purpose HPLC or FPLC applications. They are not guaranteed to work for specific customer applications. Suitability of a column has to be determined by the end user. Good Laboratory Practice (GLP) demands that a rugged method must be developed by testing at least three different gel lots to understand the type of variability in retention and selectivity that may be encountered with future columns.

Tosoh Bioscience recommends that shipments are inspected for the presence of the Inspection Data sheet, Operating Conditions and Specifications (OCS) sheet, and column appearance. After review of the shipping contents, the column should be tested within 30 days according to the conditions listed in the Inspection Data sheet to confirm that the column meets the specifications listed in the OCS sheet.

TROUBLESHOOTING COLUMN PROBLEMS

Listed below are the five most common causes of poor column performance and the precautions that must be taken to prevent these problems:

1. VOID OR DEAD SPACE AT THE COLUMN INLET OR CHANNELING OF THE PACKING

Sudden pressure surges and higher than recommended flow rates can compress the column packing, which can result in a void or a channel, especially with large pore size columns such as TSKgel G4000SW and TSKgel G4000SWXL. We recommend using an injector that ensures continuous flow onto the column during injection, i.e., no pressure pulse due to interrupted flow, and installation of a pulse dampener to suppress the sudden pressure surges encountered with quick-return pumps.

Bulk packing material is available to refill voids in some of the analytical and semi-preparative columns. We highly recommend the use of a guard column to protect your analytical column from pressure surges and to prevent irreversibly binding impurities from reaching the analytical column. A guard column also helps to neutralize the pH of the sample solvent if it is different from that of the mobile phase. The pH of the sample will be equilibrated with the mobile phase before it reaches the analytical column. This is particularly important in the silica-based SW-type columns because this silica-type is not stable at a pH higher than 7.5.

2. AIR IN COLUMN

The column should be tightly capped when not in use to prevent air from entering it. Air dissolved in the mobile phase must be removed before it can enter the column. This is particularly important for polymer-based columns. Air can be removed by sparging with helium, mobile phase filtration or other degassing procedures. If air does enter the column, follow the rehydration procedure described on page 107.

3. COLUMN CONTAMINATION OR INCOMPLETE SAMPLE RECOVERY

Cleaning conditions for all column types are provided on the OCS sheets that are shipped with each column. Cleaning solvents are discussed in the cleaning section below.

4. FRIT PLUGGING AND HIGH PRESSURE

Solvents and samples should be filtered through at least a 0.45 µm filter to prevent clogging the column frits. If the frit becomes partially plugged, the result may be split peaks or high pressure. The entire end-fitting can be removed and sonicated in 6 M nitric acid. Rinse the end-fitting thoroughly after cleaning. (Be careful not to disturb the packing.) Alternatively, this end-fitting can be replaced. Installing a membrane filter prior to the injector is recommended to prevent particles created by pump seal wear from reaching the analytical column. Consult the price list for these and other hardware products.

5. PEAK SPLITTING

Column overload, whether in volume or concentration, can cause peak splitting and poor resolution. Consult the sample capacity information for each column type to determine the appropriate concentration and volume of analyte.

CLEANING

Columns should be cleaned at regular intervals. The frequency depends on the purity of the samples. Occasionally, samples are run which adsorb onto the packing material. If one of the performance characteristics (asymmetry factor, retention time, theoretical plates, or resolution) changes by 10% or more, it is prudent to clean the column.

A Data Inspection sheet and an Operating Conditions and Specifications (OCS) sheet accompanies all TSKgel columns. The Data Inspection sheet identifies the testing method that was used to verify the column's performance. The column's specifications are listed on the OCS sheet. However, a well resolved sample component could be used to monitor the column. Establish that the column is performing properly using the standard test probes listed on the Data Inspection sheet. Calculate the asymmetry factor, theoretical plates and resolution of one or more of the sample components. Note the retention time. This becomes the baseline test mix which provides a basis for comparison.

APPENDIX

BASIC RULES FOR CLEANING TSKgel COLUMNS - ALL TYPES

- 1. Clean the column in the reverse flow direction.
- 2. During cleaning, do not connect the column to the detector.
- 3. Run the column at half the maximum flow rate making sure to monitor the pressure.
- 4. If cleaning with a high or low pH solution, make certain that the rest of the chromatographic system (pump, pump seals, injector, etc.) is compatible.
- 5. Use at least 5 column volumes (CV) of each cleaning solution and rinse with 5 CV of ultra pure water between each cleaning step.
- 6. Equilibrate with 5 CV of the mobile phase for the method.

Each type of TSKgel column has a recommended set of cleaning solutions specific to the column, as described below and on the OCS sheet. Choose a cleaning solution based upon the column and sample type. In general low pH salt solution will remove basic proteins, and organics will remove hydrophobic proteins. Chaotropic agents will remove strongly adsorbed materials (e.g. hydrogen bonded). For columns or column types not listed below, please contact Tosoh Bioscience Technical Service Specialists at +49 (0)711 13257-0.

CLEANING SOLUTIONS

SIZE EXCLUSION, TSKgel SW AND SW ${\rm XL}$ TYPES

- 1. Concentrated salt (e.g. $0.5 \text{ mol/L Na}_2SO_4$) at low pH (e.g. pH 3.0)
- Water soluble organic (MeOH, ACN, EtOH, 10 % 20 %) in aqueous buffer
- Note: Detergents are difficult to remove. They require rinsing with 20 to 40 CV of 20% ACN. Therefore they should be used only when the previous cleaning solutions are not effective. Buffered solutions of SDS (0.1 %), urea (8 mol/L), or guanidin (6 M)

SIZE EXCLUSION, TSKgel PW AND PWxL TYPES

- 1. High concentration salt (e.g. 0.5 mol/L 1.0 mol/L $\rm Na_2SO_4)$ in aqueous buffer
- 2. Buffered solutions at low pH (e.g. 2 3) or high pH (e.g. 11 12)
- Water soluble organic (MeOH, ACN, EtOH, 10% 20%) in aqueous buffer
- Note: Detergents are difficult to remove. They require rinsing with 20 to 40 CV of 20% ACN. Therefore they should be used only when the previous cleaning solutions are not effective. Buffered solutions of SDS (0.1 %), urea (8 mol/L), or guanidine (6 mol/L).

ION EXCHANGE, TSKgel SW-TYPE

- 1. High concentration salt (e.g. 0.5 mol/L 1.0 mol/L $\rm Na_2SO_4)$ in aqueous buffer
- 2. Buffered solutions at low pH (e.g. 2 3)
- Water soluble organic (MeOH, ACN, EtOH, 10% 20%) in aqueous buffer
- Note: Chaotropic agents are difficult to remove. They require rinsing with 20 to 40 CV of 20% ACN. Therefore

they should be used only when the previous cleaning solutions are not effective.

Urea (8 mol/L) or non-ionic surfactant in buffer solution.

ION EXCHANGE, TSKgel PW-TYPE

- Inject up to 1 CV in 250 μL increments of 0.1 mol/L 0.2 mol/L NaOH on analytical columns. Inject proportionally larger volumes on semi-preparative columns.
- 20 % 40 % aqueous acetic acid* (Since acid can precipitate protein it should be used after other cleaning methods.)
- Water soluble organic (MeOH, ACN, EtOH, 10% 20%) in aqueous buffer
- 4. Note: Chaotropic agents are difficult to remove. They require rinsing with 20 to 40 CV of 20% ACN. Therefore they should be used only when the previous cleaning solutions are not effective.

Urea (8 mol/L) or non-ionic surfactant in buffer solution.

Note: Rinse Ion Exchange columns with 5 CV of the appropriate solution to restore the correct counter-ion before equilibrating with loading buffer.

HYDROPHOBIC INTERACTION, TSKgel PW-TYPE

- 1. 0.1 mol/L 0.2 mol/L NaOH*
- 20 % 40 % aqueous acetic acid* (Since acid can precipitate protein it should be used after other cleaning methods.)

REVERSED PHASE, SILICA-BASED

- 1. 100% acetonitrile or methanol
- 2. Gradient from 10% 100% acetonitrile in 0.05% trifluoro- acetic acid

REVERSED PHASE, POLYMER-BASED

- 1. 100 % acetonitrile or methanol
- 2. 0.1 mol/L 0.2 mol/L NaOH*
- 20 % 40 % aqueous acetic acid* (Since acid can precipitate protein it should be used after other cleaning methods.)

HILIC, TSKgel SW-TYPE

- 1. Water
- 2. 45 % acetonitrile or acetone
- 3. 0.1 % triethylamine in at least 75 % acetonitrile
- 4. 50 mmol/L phosphate buffer pH 6.0 in 50 % acetonitrile

Affinity Columns, TSKgel PW-type

Consult the OCS sheet of the specific column type for cleaning directions.

*Inject up to 1 CV in 250 µL increments of solutions 2 & 3 on analytical columns. Inject proportionally larger volumes on semi-preparative columns.

APPENDIX

GUARDING YOUR COLUMN

GLP procedures demand that the separation column be protected by a guard column. Tosoh Bioscience supplies an assortment of packed guard columns and guardgel kits. Guardgel kits contain the hardware and the gel packing material to fill a guard column using an aspirator. For those columns where a guard column is not available, Tosoh Bioscience recommends the use of an in-line filter with a 0.5 μ m cutoff to avoid frequent plugging of the 1.0 μ m pores in the column frit. A pre-injector membrane filter is also recommended to prevent particles generated by pump seal wear from reaching the column.

REHYDRATION

Dehydration of TSKgel liquid chromatography columns can occur during long-term storage or from improper use. Dehydration can also occur if the plugs are not tightened or if air inadvertently is pumped into the column during use. It is easier to detect dehydration in glass columns because the dry packing will appear to pull away from the column walls. This condition can be remedied by using the following procedure:

- 1. Connect the column to your LC system in the reverse flow direction.
- 2. Do not connect the column to the detector.
- Pump a filtered mobile phase of 20 % methanol in ultrapure water over the column at half of the recommended maximum flow rate.

Note: reversed phase columns require 60 % methanol.

- Continue this procedure until the column has been rehydrated. Rehydration can take several hours, depending on the column size.
- 5. Connect the column to the LC system in the proper flow direction.
- 6. Rinse with 3 column volumes (CV) of ultra pure water to remove the organic if it is not part of the normal mobile phase.
- 7. Equilibrate with loading buffer (usually 3-5 CV).
- 8. Perform the recommended QC tests to ensure that the column is performing properly. Evaluation methods are available from the Technical Service Department of Tosoh Bioscience.

COLUMN STORAGE

When the column will be used the next day, allow it to run overnight at a low flow rate in a buffer that does not contain a halide salt. When the column will not be used for more than a day, clean it first, then flush salt from the column and store in 0.05 % sodium azide or 20 % ethanol. Seal tightly to prevent the column from drying out.

SCALING UP

FOR SIZE EXCLUSION CHROMATOGRAPHY

Tosoh Bioscience offers semi-preparative (21.5 mm ID), preparative (55 mm ID), and larger ID stainless steel columns packed with TSKgel SW-type or PW-type resin for seamless scale-up to commercial production of therapeutic proteins and other biopharmaceuticals. These packing materials have a larger particle size that is appropriate for use in process scale equipment. The packing materials, however, have the same pore size and provide the same selectivity as the corresponding TSKgel analytical column. The column volume (CV) of

the preparative column that is needed to produce the required amount of product (per injection) is given by the relationship:

(CV)pc / (CV)ac = (mg product)pc / (mg product)ac

in which pc and ac refer to the preparative and analytical column respectively. The volume of a column is equal to $^{1}\!/\!4 \,\pi \,(ID)^{2}L$, in which ID is the internal diameter and L the length of the column. In scaling up, column length (L) is usually kept constant. If so, to achieve a 100-fold increase in product per run, the ID of the prep column should be 10 times larger than that of the analytical column. As noted, the particle size in the preparative column is usually larger, and one should select a larger ID column than predicted by the above equation. As a rule of thumb, a 2-fold increase in particle size reduces resolution and thus output by the square root of 2.

Since scale-up from analytical columns is relatively straightforward, preparative TSKgel SW columns may be an economical route for the rapid production of biomolecules for clinical testing. See the SEC section of this catalog for more information and request a copy of the process media catalog. For more detailed analysis of your scale-up requirements, please contact Tosoh Bioscience's Technical Service Specialists.

SCALING UP

FOR HYDROPHOBIC INTERACTION AND ION EXCHANGE CHROMATOGRAPHY

Tosoh Bioscience provides various ID preparative columns for hydrophobic interaction (HIC) and ion exchange (IEC) chromatography. As shown above, to calculate the sample capacity of a larger column, multiply the capacity obtained on a 7.5 mm ID column by the ratio of the column volumes. The table below lists the column volumes for TSKgel HIC and IEC columns and their ratios relative to the 7.5 mm ID x 7.5 cm L column.

Dimensions

(mm ID x cm L)	Volume (mL)	Volume ratio*
5 x 5	1.0	0.3
7.5 x 7.5	3.3	1.0
8.0 x 7.5	3.8	1.2
20 x 15	47.1	14.3
21.5 x 15	54.4	16.4
55 x 20	474.9	143.6
108 x 20	1831.2	554.8

* Relative to 7.5 mm ID x 7.5 cm L column

Based on a 1 mg capacity for a 7.5 mm ID x 7.5 cm L column, the capacity for a 55 mm ID x 20 cm L column is expected to be about 150 mg. Much larger amounts of crude sample can be injected as long as impurities do not co-elute from the column with the compound of interest.

PROCESS

BEWARE OF EXTRA-COLUMN BAND BROADENING

In recent years Tosoh has introduced several high efficiency column types with small internal diameters. Examples are:

- 1 mm ID, 2 mm ID and 4.6 mm ID x 30 cm L TSKgel SuperSW3000,
- 4.6 mm ID and 6 mm ID x 15 cm L TSKgel SuperAW columns.

It is well known that when the column diameter decreases, peak volumes decrease by the square of the ratio of column diameter. In contrast, a decrease in column length results in a proportional decrease in peak volume. Thus, when changing column dimensions from 7.8 mm ID x 30 cm L to 6 mm ID x 15 cm L results in a reduction of peak volume by a factor of $(7.8/6)^{2*}(30/15) = 3.4$. Similarly, the reductions in peak volume are 5.8 when going from 7.8 mm ID x 30 cm L to 4.6 mm ID x 15 cm L, and 21.1 when replacing a 4.6 mm ID x 30 cm L column by one that is 1 mm ID x 30 cm L. Such large reductions in peak volume require that the HPLC system is optimized with respect to external factors that contribute to the sample band broadening that takes place inside the column. Neglecting to optimize the HPLC system can seriously detract from the true column efficiency, which ultimately can result in unacceptable analysis results.

Main contributors to extra-column band broadening are capillary tubing that connect the column to the injector and the detector, injection volume, detector cell volume, detector time constant, and others.

Separation Report 95 discusses some of the variables to check when working with a smaller ID column, in this case the use of a 4.6 mm ID x 30 cm L TSKgel SuperSW3000 column (4 micron) compared to a 7.8 mm ID x 30 cm L TSKgel G3000SW_{xL}column (5 micron). You can download this and other separation reports from our website: www.tosohbioscience.com

APPENDIX B

RECOMMENDED STANDARDS FOR QUALITY CONTROL OF TSKgel COLUMNS

Standard	Approximate* molecular weight (Da	1)
Adenylate Kinase	6,000	
, Alcohol Dehydrogenase	150,000	
Aldolase	158,000	
β-Amylase	200,000	
Blue Dextran	2,000,000	
Bombesin	1,620	
Bovine Serum Albumin (BSA) 67,000	
Carbonic Anhydrase	29,000	
α -Chymotrypsin	25,200	
α -Chymotrypsinogen	25,700	
Conalbumin	70,000	
Cytidine	243	
Cytidine-5'-monophosph	ate 323	
Cytochrome C	12,400	
D-Mannitol	182	
Dopamine HCI	190	
Enolase	67,000	
Ethylene glycol	62	
Ferretin	460,000	
γ-Globulin	150,000	
Glutamate Dehydrogena	se 55,000	
Glycine Monomer	246	
lgG	160,000	
IgM	900,000	
Insulin	6,000	
Lactate Dehydrogenase	36,500	
Lysozyme	14,500	
Myoglobin	16,900	
Ovalbumin	43,000	
p-Aminobenzoic Acid	137	
Peroxidase	40,200	
Phosphorylase B	94,000	
Polyethylene Glycol Kit	1.1K, 1.5K, 3.7K, 10.9K, 19.7K	
Polyethylene Oxide Kit	18K, 39K, 86K, 145, 252K, 594K, 996K	
Polystyrene Kit	530, 950, 2.8K, 6.2K, 10.3K, 15.7K, 43.9K,	
	102K, 186K, 422K, 775K, 1260K	
Pyruvate kinase	58,000	
Ribonuclease A	12,600	
Thyroglobulin	660,000	
Transferrin	80,000	
Trypsin	23,300	
Trypsin Inhibitor	20,000	
Trypsinogen	24,000	
Tryptamine•HCI	24,000	
Uric Acid	168	

* exact molecular weight will depend on the species

APPENDI

APPENDIX

APPENDIX C

United States Pharmacopeia (USP) specifications and corresponding Tosoh Bioscience columns

- L1 Octadecyl silane chemically bonded to porous silica or ceramic micro-particles, 1.5 to 10 μm in diameter, or a monolithic rod. Recommendations: TSKgel ODS-100V, ODS-100Z, ODS-100S, Super-ODS, ODS-80TM, ODS-80TS, ODS-120A, ODS-120T See: Reversed Phase section
- L7 Octylsilane chemically bonded to totally porous silica particles, 1.5 to 10 μm in diameter.
 Recommendations: TSKgel Super-Octyl, Octyl-80TS
 See: Reversed Phase section
- L-9 Irregular or spherical, totally porous silica gel having a chemically bonded, strongly acidic cation-exchange coating, 3 to 10 μm in diameter. Recommendations: TSKgel SP-2SW See: Ion Exchange section
- L10 Nitrile groups chemically bonded to porous silica particles, 3 to 10 μm in diameter. Recommendations: TSKgel CN-80TS See: Reversed Phase section
- L11 Phenyl groups chemically bonded to porous silica particles, 1.5 to 10 μm in diameter. Recommendations: TSKgel Super-Phenyl See: Reversed Phase section
- L13 Trimethylsilane chemically bonded to porous silica particles, 3 to 10 μm in diameter. Recommendations: TSKgel TMS-250 See: Reversed Phase section
- L20 Dihydroxypropane groups chemically bonded to porous silica particles, 5 to 10 μm in diameter. Recommendations: TSKgel QC-PAK 200 and 300, SW_x series, SW series *See: Size Exclusion section*
- L21 A rigid, spherical styrene-divinylbenzene copolymer, 5 to 10 μm in diameter Recommendations: TSKgel H_{xt} and H_{HR} series *See: Size Exclusion section*
- L22 A cation-exchange resin made of porous polystyrene gel with sulfonic acid groups, about 10 μm in size Recommendations: TSKgel SCX *See: Ion Exchange section*

L23 - An anion-exchange resin made of porous polymethacrylate or polymethacrylate gel with quartenary ammonium groups, about 10 μm in size.

Recommendations: TSKgel SuperQ-5PW, BioAssist Q, IC-Anion PW See: Ion Exchange section

L24- A semi-rigid hydrophilic gel consisting of vinyl polymers with numerous hydroxyl groups in the matrix surface, 32 to 63 μm in diameter.

Recommendations: TOYOPEARL HW-type See: Size Exclusion in the Bulk Resin section

 L25- Packing having the capacity to separate compounds with a molecular weight range from 100-5000 (as determined by polyethylene oxide), applied to neutral, anionic, and cationic water-soluble polymers.
 Recommendations: TSKgel G2500PW, G2500PW_{x1}, Alpha-2500, SuperAW2500 See: Size Exclusion section

- L33- Packing having the capacity to separate dextrans by molecular size over a range of 4,000 to 500,000 daltons. It is spherical, silicabased, and processed to provide pH stability.
 Recommendations: TSKgel SuperSW, SW_x, QC-PAK, and SW series
 See: Size Exclusion section
- L37- Packing having the capacity to separate proteins by molecular size over a range of 2,000 to 40,000 daltons. It is a polymethacrylate gel. Recommendations: TSKgel G3000PW_{xL}, G3000PW, *See: Size Exclusion section*
- L38- A methacrylate-based size-exclusion packing for water-soluble samples Recommendations: TSKgel PW_{xt}, PW, Alpha, and SuperAW series *See: Size Exclusion section*
- L39- A hydrophilic polyhydroxymethacrylate gel of totally porous spherical resin.
 Recommendations: TSKgel PW, PW_{xt}, Alpha, and SuperAW series See: Size Exclusion section
- L52- A strong cation exchange resin made of porous silica with sulfopropyl groups, 5 to 10 μm in diameter. Recommendations: SP-2SW *See: Ion Exchange section*
- L58- Strong cation-exchange resin consisting of sulfonated crosslinked styrene-divinylbenzene copolymer in the sodium form, about 7 to 11 μm diameter. Recommendations: TSKgel SCX (Na^{*}) *See: lon Exchange section*

APPENDIX

APPENDIX

L59- Packing having the capacity to separate proteins by molecular weight over the range of 10 to 500 kDa. It is spherical (10 µm), silica-based, and processed to provide hydrophilic characteristics and pH stability.

Recommendations: TSKgel G2000SW, G3000SW and G4000SW See: Size Exclusion section L60- Spherical, porous silica gel, 10 µm or less in diameter, the surface of which has been covalently modified with alkyl amide groups and endcapped.
 Recommendations: TSKgel Amide-80
 See: HILIC section

INDEX

110

TSKgel Columns	Pages	ODS-120T	17 - 18	G5000PWxL	41 - 47
		ODS-140HTP	13 - 14	G5000PWxL-CP	41 - 47
AFFINITY		ODS-80Tm	17 - 18	G6000Hhr	52 - 58
BioAssist Chelate	86 - 89	ODS-80Ts	15, 18	G6000HxL	52 - 58
Boronate-5PW	86 - 89	OligoDNA RP	15	G6000PW	41 - 47
Chelate-5PW	86 - 89	Phenyl-5PW RP	16	G6000PWxL	41 - 47
Tresyl-5PW	86 - 89	Super-Octyl	13 - 14	G6000PWxL-CP	41 - 47
		Super-ODS	13 - 14	G7000Hhr	52 - 58
HYDROPHOBIC INTERACTION		Super-Phenyl	13 - 14	G7000HxL	52 - 58
BioAssist Phenyl	76 - 83	TMS-250	15	GMHнв-H (mixed-bed)	52 - 58
Butyl-NPR	76 - 83			GMHHR-H(20)HT (mixed bed)	52 - 58
Ether-5PW	76 - 83	SIZE EXCLUSION		GMHHR-H(30)HT (mixed bed)	52 - 58
Phenyl-5PW	76 - 83	Alpha-2500	48 - 51	GMHHR-H(S)HT (mixed-bed)	52 - 58
		Alpha-3000	48 - 51	GMHнв-L (mixed-bed)	52 - 58
ION EXCHANGE		Alpha-4000	48 - 51	GMHHR-M (mixed-bed)	52 - 58
QSTAT	62 - 70	Alpha-5000	48 - 51	GMHHB-N (mixed-bed)	52 - 58
BioAssist Q	62 - 70	Alpha-6000	48 - 51	GMHxL (mixed-bed)	52 - 58
BioAssist S	71 - 75	Alpha-M (mixed bed)	48 - 51	GMHxl-HT	52 - 58
CM-2SW	71 - 75	BioAssist G2SWxL	32 - 40	GMHxL-L (mixed-bed)	52 - 58
CM-3SW	71 - 75	BioAssist G3SWxL	32 - 40	GMPW	41 - 47
CM-5PW	71 - 75	BioAssist G4SWxL	32 - 40	GMPWxL	41 - 47
CM-STAT	71 - 75	BioAssist G6PW	41 - 47	Multipore HxL-M	52 - 58
DEAE-2SW	62 - 70	G-DNA-PW	41 - 47	QC-PAK GFC 200	32 - 40
DEAE-3SW	62 - 70	G-Oligo-PW	41 - 47	QC-PAK GFC 300	32 - 40
DEAE-5PW	62 - 70	G1000Hhr	52 - 58	SuperAW2500	48 - 51
DEAE-NPR	62 - 70	G1000HxL	52 - 58	SuperAW3000	48 - 51
DNA-NPR	62 - 70	G1000PW	41 - 47	SuperAW4000	48 - 51
DNA-STAT	62 - 70	G2000Hhr	52 - 58	SuperAW5000	48 - 51
Q-STAT	60 - 68	G2000HxL	52 - 58	SuperAW6000	48 - 51
SAX	62 - 70	G2000PW	41 - 47	SuperAWM-H	48 - 51
SCX	71 - 75	G2000SW	32 - 40	SuperH1000	52 - 58
SP-2SW	71 - 75	G2000SWxL	32 - 40	SuperH2000	52 - 58
SP-5PW	71 - 75	G2500Hhr	52 - 58	SuperH2500	52 - 58
SP-NPR	71 - 75	G2500HxL	52 - 58	SuperH3000	52 - 58
SP-STAT	71 - 75	G2500PW	41 - 47	SuperH4000	52 - 58
Sugar AXG	62 - 70	G2500PWxL	41 - 47	SuperH5000	52 - 58
Sugar AXI	62 - 70	G3000Hhr	52 - 58	SuperH6000	52 - 58
SuperQ-5PW	62 - 70	G3000HxL	52 - 58	SuperH7000	52 - 58
		G3000PW	41 - 47	SuperHM-H	52 - 58
HYDROPHILIC INTERACTION		G3000PWxL	41 - 47	SuperHM-L	52 - 58
Amide-80	21 - 28	G3000PWxL-CP	41 - 47	SuperHM-M	52 - 58
NH2-100	21 - 28	G3000SW	32 - 40	SuperHM-N	52 - 58
		G3000SWxL	32 - 40	SuperHZ1000	52 - 58
REVERSED PHASE		G4000Hhr	52 - 58	SuperHZ2000	52 - 58
ODS-100V	8 - 12	G4000HxL	52 - 58	SuperHZ2500	52 - 58
ODS-100Z	8 - 12	G4000PW	41 - 47	SuperHZ3000	52 - 58
CN-80Ts	17 - 18	G4000PWxL	41 - 47	SuperHZ4000	52 - 58
Octadecyl-2PW	16	G4000SW	32 - 40	SuperHZM-H	52 - 58
Octadecyl-4PW	16	G4000SWxL	32 - 40	SuperHZM-M	52 - 58
Octadecyl-NPR	16	G5000Н нв	52 - 58	SuperHZM-N	52 - 58
Octyl-80Ts	17 - 18	G5000HxL	52 - 58		
0DS-120A	17 - 18	G5000PW	41 - 47		

INDEX

SuperMultipore HZ-H	52 - 58	TOYOPEARL SP-550	96 - 97, 99, 102
SuperMultipore HZ-M	52 - 58	TOYOPEARL SP-650	96 - 97, 99, 102
SuperMultipore HZ-N	52 - 58	TOYOPEARL SuperQ-650	96 - 97, 99, 102
SuperMultipore PW-H	41 - 47	TSKgel DEAE-5PW	96 - 97, 99, 102
SuperMultipore PW-M	41 - 47	TSKgel SP-3PW	96 - 97, 99, 102
SuperMulitpore PW-N	41 - 47	TSKgel SP-5PW	96 - 97, 99, 102
Super Oligo PW	41 - 47	TSKgel SuperQ-5PW	96 - 97, 99, 102
SuperSW2000	32 - 40		
SuperSW3000	32 - 40	SIZE EXCLUSION	
VMpak-25	48 - 51	TOYOPEARL HW-40	96 - 98, 102
		TOYOPEARL HW-50	96 - 98, 102
LabPak Media	95	TOYOPEARL HW-55	96 - 98, 102
		TOYOPEARL HW-65	96 - 98, 102
ToyoScreen Process		TOYOPEARL HW-75	96 - 98, 102
Development columns	92 - 94		
	01 0.	Topics	
Resins		Calibration curves	36, 42, 43, 49, 53,
		Cleaning	104 - 105
AFFINITY		Column storage	106
TOYOPEARL AF-Amino-650	96 - 97, 101, 103	Extra-column band broadening	107
TOYOPEARL AF-Blue HC-650	96 - 97, 101, 103	Guarding your column	106
TOYOPEARL AF-Carboxy-650	96 - 97, 101, 103	Recommended standards	107
TOYOPEARL AF-Chelate-650	96 - 97, 101, 103	Rehydration	106
TOYOPEARL AF-Epoxy-650	96 - 97, 101, 103	Scaling up	106
TOYOPEARL AF-Formyl-650	96 - 97, 101, 103	Troubleshooting column problems	100
TOYOPEARL AF-Heparin-HC650	96 - 97, 101, 103	USP Specifications	108 - 109
TOYOPEARL AF-rProtein A-650F	96 - 97, 101, 103		100 100
TOYOPEARL AF-Red-650	96 - 97, 101, 103		
TOYOPEARL AF-Tresyl-650	96 - 97, 101, 103		
TSKgel AF-Tresyl-5PW	96 - 97, 101, 103		
ISKyel Al-Tresyl-51 W	50 - 57, 101, 105		
HYDROPHOBIC INTERACTION			
TOYOPEARL Butyl-650	96 - 97, 100, 103		
TOYOPEARL Butyl-600	96 - 97, 100, 103		
TOYOPEARL Ether-650	96 - 97, 100, 103		
TOYOPEARL Hexyl-650	96 - 97, 100, 103		
TOYOPEARL Phenyl-600M	96 - 97, 100, 103		
TOYOPEARL Phenyl-650	96 - 97, 100, 103		
TOYOPEARL PPG-600M	96 - 97, 100, 103		
TOYOPEARL SuperButyl-550C	96 - 97, 100, 103		
TSKgel Ether-5PW	96 - 97, 100, 103		
TSKgel Phenyl-5PW	96 - 97, 100, 103		
5 ,			
ION EXCHANGE			
TOYOPEARL CM-650	96 - 97, 99, 102		
TOYOPEARL DEAE-650	96 - 97, 99, 102		
TOYOPEARL GigaCap CM-650	96 - 97, 99, 102		
TOYOPEARL GigaCap Q-650	96 - 97, 99, 102		
TOYOPEARL GigaCap S-650	96 - 97, 99, 102		
TOYOPEARL MegaCap II SP-550EC	96 - 97, 99, 102		
TOYOPEARL Q-600C AR	96 - 97, 99, 102		
TOYOPEARL QAE-550	96 - 97, 99, 102		
	- , ,		

APPENDIX

