

(U)HPLC Analysis : C18AQ stationary phases

www.interchim.com www.blog.interchim.com www.forum.interchim.com www.facebook.com/interchim

Printerchim®

211bis Avenue J.F. Kennedy - BP 1140 - 03103 Montluçon Cedex - France S.A. a conseil de surveillance 1.548.000 euro - RCS Montluçon 917 050 171 - APE 4669B

(U)HPLC, prep-LC & Flash columns

Uptisphere[®] CS Evolution

Core Shell columns for fast & highly efficient identification & quantification of small molecules.

Uptisphere® 120Å

HPLC & prep LC columns for the identification, quantification & purification of **small molecules & pharma compounds.**

Uptisphere[®] Strategy[™]

(U)HPLC, Analytical & prep LC columns with **high loadability** for identification, quantification & purification of **small molecules & pharma compounds**.

Uptisphere[®] X-serie[™]

HPLC & prep LC columns for the identification, quantification & purification of **small molecules & bio-drugs at high & low pH**.

Uptisphere® 300Å

HPLC & prep LC columns for identification, quantification & purification of Proteins, Peptides & Polypeptides.

interch

puriFlash[®] Prep

prep LC columns for sophisticated purification of small & bio-molecules & pharma compounds.

puriFlash®

Flash columns for routine purification of small & bio-molecules & pharma compounds.

(U)HPLC Analysis <=>		Purification			
Small molecules	Oligonucleotides, Peptides & Polypeptides	Small molecules	Oligonucleotides, Peptides & Polypeptides		
70% C18 30% Hilic, C8, C4, Ph/Hex, PFP,	50% C18 35% C8, C4 15% Hilic	25% Reverse phase 75% Normal phase	80% Reverse phase 20% Normal phase/Hilic		

C18AQ stationary phases Versatility

Using polar or hydrophilic endcapping along with bonding of longer alkyl chains such as C18 is a successful development approach for stationary phases that can retain polar analytes reproducibly under highly aqueous conditions.

For solubility reasons, many polar compounds prefer a highly aqueous mobile phase and can be retained only with a minimal concentration of organic modifier, sometimes less than 5%....

... we demonstrated and discussed the phenomenon of phase collapse and mentioned approaches to solve the problem and successfully separate polar analytes using mobile-phase systems with a very high percentage of water, even as great as 100% water to separate polar compounds in highly aqueous environments.

LCGC Europe dec 2002 ; Columns for Reversed-Phase LC Separations in Highly Aqueous Mobile Phases Ronald E. Majors, Agilent Technologies, Wilmington, Delaware, USA, and Matthew Przybyciel, ES Industries, West Berlin, New Jersey, USA

Benefits of C18AQ stationary phases

- ✓ Stable under 100% H2O conditions
- Retentive and Selective for polar compounds which represent the main molecules to be analyzed and purified today
- Good peak shape with basic compounds
- Available from analytical scale to purification, Core-Shell particles up to preparative => Interchim, unique offer on the market!

History & Evolution of Interchim C18 AQ technologies

Interchim C18-AQ : stable under 100% H2O conditions

Interchim C18-AQ Phases

=> Perfectly usable with 100% aqueous mobile phases Repeatability of analysis times under 100% H2O conditions

C18 Silica

- ⇒ The C18 bonding condenses towards the silica surface using mobile phases containing > 95% H2O
- \Rightarrow No or loss of retention & separation

Interchim C18-AQ : retention with polar compounds

Interchim C18-AQ Phases => Better retention of polar compounds

Conventional C18 silica => Less retention of polar compounds

Interchim C18-AQ : selectivity with basic polar compounds

	lpha _{2,6} diMPyridine/Pyridine	
CS Evolution 2.6µm C18-AQ	1,18	$\overline{}$
CS Evolution 2.6µm C18-RP	1,12	••
AMT Halo 2.7µm C18	1,00	•••
Uptisphere 3µm C18-HDO	1,08	•••
Uptisphere 5µm C18-HDO	1,09	\bigcirc
Uptisphere Strategy 3µm C18-RP	1,06	$\overline{}$
Y 3µm ODS-AQ	1,05	•••
PuriFlash 5µm C18AQ 70A	1,43	$\overline{}$

Test Conditions

Mobile Phase : Acetonitrile/Buffer pH=5.5 - (20/80) Flow Rate (mL/min) : 1.0

Interchim C18-AQ : good peak shape with basic compounds

Interchim C18-AQ

- \Rightarrow Low activity of surface silanols
- \Rightarrow Good peak shape for basic compounds

1) Pyridine, 2) 2,6 Dimethylpyridine Mobile phase 20/80 ACN-buffer pH: 5.7 @ 1 ml/min – UV: 254nm

Minterchim

Availability of Interchim C18AQ stationary phases

	UHPLC	HPLC	Prep LC	Flash
Uptisphere C18-HDO	:	\odot		
Uptisphere Strategy C18-RP	(;)	\odot	\odot	
Uptisphere X-Series C18-AQ		\odot	\odot	
puriFlash PF C18-AQ		\odot	\odot	(;)
Uptisphere CS Evolution C18-RP	\odot	\odot		
Uptisphere CS Evolution C18-AQ	\odot			

Uptisphere C18-HDO

CS Evolution C18-AQ

puriFlash PF C18-AQ

Strategy C18-RP

R

Selection

C18-RP Selectivity — Uptisphere[®] CS Evolution[™]

Capacity

Productivity

Uptisphere[®] CS Evolution[™] C18-RP

85Å - 130m²/g

2.6 µm

Bonding: C18 monofunctional %C: 6,0 End-capping: multi step mixte

pH stability: 1.5 to 8.0

Suitable for mid & non polar compounds separation. RP shows excellent mechanical stability that provides long-life & make it an excellent tool for analysis under acidic or basic conditions.

USP code: L1

Application: mid-polar organic compounds

C18-AQ Selectivity — Uptisphere[®] CS Evolution[™] — Capacity Productivity

USP code: L1

Application: mid-polar organic compounds 100% water compatible

Uptisphere[®] CS Evolution[™] C18-AQ

85Å - 130m²/g

 $2.6\,\mu m$

Bonding: C18 monofunctional %C: 6.5% End-capping: Mixte

pH stability: 1.5 to 7.0

Suitable for mid & non polar compounds separation. RP shows excellent mechanical stability under 100% aqueous mobile phase conditions.

C18-RPSelectivityUptisphere® Strategy™_____CapacityProductivity

Strategy™ C18-RP 100Å - 425m²/g

2.2, 3, 5, 10 & 15 μm

Bonding: C18 monofunctional %C: 16 End-capping: multi step mixte

pH stability: 1.5 to 8.0

Suitable for mid & non polar compounds separation. RP shows excellent mechanical stability that make it an excellent tool for purification under acidic or basic conditions.

USP code: L1

· OH

CH₃

Application: mid-polar organic compounds

- C₁₈H₃₇

C18-HDOSelectivity— Uptisphere® 120Å—CapacityProductivity

USP code: L1

Application: mid-polar organic compounds 100% water compatible

Uptisphere® C18-HDO

120Å - 320m²/g

2.2, 3, 5µm

Bonding: C18 monofunctional %C: 17 End-capping: Mixte

pH stability: 1.5 to 7.0

Suitable for mid & non polar compound separation. Shows excellent stability under 100% aqueous mobile phase condition.

C18-AQSelectivity— Uptisphere® X-serie™—CapacityProductivity

Reusable columns

Application: Bio-molecules, Bio-Drugs

Uptisphere[®] X-serie [™] C18-AQ

220Å - 200m²/g

3, 5 & 15 μm

Bonding: C18 %C: 14

End-capping: mixte

pH stability: 1.0 to 10.0

mid-polar BioDrugs & Peptides with medium molecular weight. 100% water compatible

C18-AQ Selectivity — puriFlash® Prep — Capacity Productivity

puriFlash[®] Prep C18-AQ

Spherical silica 60Å - 500m²/g

5, 10, 15 & 30 μm

Bonding: C18 %C: 14

End-capping: one-step hydrophilic

pH stability: 2.0 to 7.5

Reusable columns

Application: mid-polar organic compounds 100% water compatible *The bonding chemistry allow to start gradient with 100% of water. Suitable for the purification of mid and non polar compounds.*

interchim

211 bis avenue JF Kennedy – BP1140 – 03100 Montluçon France Tel. +33 4 70 03 88 55 – Fax +33 4 70 03 82 60 interchim@interchim.com – www.interchim.com