

Nos technologies de silice Interchim®

Toutes nos silices Uptisphere® (120 Å, CS Evolution, Strategy™, puriFlash® & puriFlash® Bio suivent des processus de fabrication rigoureux et innovants. Les silices bases sont produites dans des réacteurs céramiques à partir de particules standard pour la purification ou totalement exemptes de toutes traces de métaux pour l'analyse. Chacune des différentes étapes de synthèse est strictement contrôlée.

Cette rigueur conduit à l'obtention de particules extrêmement stables mécaniquement. Les distributions de granulométrie et de porosité ainsi que les surfaces spécifiques sont parfaitement définies et reproductibles.

Nos silices puriFlash® & puriFlash® Bio sont spécifiquement conçues pour répondre aux contraintes de la chromatographie liquide préparative. Elles allient qualité et respect des coûts associés à cette technique.

Nos silices présentent trois avantages majeurs :

- Un parfait contrôle de l'état de surface.
 Nous modifions physiquement ou chimiquement la surface de la silice pour choisir le type, la quantité de silanols ou l'énergie globale de surface en fonction de l'objectif à atteindre.
- 2. Des pores cylindriques. La quantité de silanols libres et leur excellente accessibilité permet d'obtenir une fonctionnalisation (greffage) homogène et particulièrement dense. Il en découle une très bonne capacité de charge et une bonne stabilité de ces phases stationnaires sous des conditions de phases mobiles agressives telles que les tampons basiques.
- 3. Une grande stabilité mécanique. Nos phases stationnaires peuvent supporter de multiples "packages" et "dé-packages" sans dommage pour intégrité du support. Elles sont un outil de choix pour la chromatographie préparative.

Silices modifiées

Le Laboratoire d'Etude des Techniques et des Instruments d'Analyse Moléculaire (LETIAM), unité constitutive du groupe de chimie analytique de Paris Sud implantée à l'IUT d'Orsay, a joué un rôle fondamental dans notre réflexion qui a conduit au développement de nos phases stationnaires.

Le laboratoire des Sciences et Méthodes Séparatives - (SMS) de l'Institut de Recherche en Chimie Organique Fine - (IRCOF) a concrétisé une partie de nos idées en développant des schémas de synthèse innovants pour la modification de nos silices "Core-Shell" Uptisphere® CS Evolution.

C'est une cinquantaine de sélectivités que nous proposons aujourd'hui pour répondre à l'ensemble des besoins des analystes et des chimistes pour l'identification, la quantification et la purification des petites molécules organiques, des peptides et des protéines.

Silice base : standard Pure & Ultra pure (99,995 %)

Particules : irrégulières, granulaires, sphériques

Granulométrie : 1,7 μ m [+/- 0,1] 2,2 μ m [+/- 0,15] 2,5 - 2,6 μ m [+/- 0,1] 3 - 3,5 μ m [+/- 0,2] 5 μ m [+/- 0,3] 10 μ m [+/- 1,0] 15 μ m [+/- 2,0] 25 - 30 μ m [+/- 5] 50 μ m [+/- 10]

Surface / Porosité : $60 \text{ Å [+/- 10] / 500 m}^2/g \text{ [+/- 50]} \\ 85 \text{ Å [+/- 5] / 130 m}^2/g \text{ [+/- 25]} \\ 100 \text{ Å [+/- 15] / 425 m}^2/g \text{ [+/- 40]} \\ 120 \text{ Å [+/- 15] / 320 m}^2/g \text{ [+/- 40]} \\ 130 \text{ Å [+/- 15] / 300 m}^2/g \text{ [+/- 40]} \\ 200 \text{ Å [+/- 15] / 150 m}^2/g \text{ [+/- 40]} \\ 220 \text{ Å [+/- 15] / 200 m}^2/g \text{ [+/- 40]} \\ 300 \text{ Å [+/- 40] / 100 m}^2/g \text{ [+/- 20]} \\ \end{aligned}$

Taux de métaux : Standard Pure < 500 ppm -Ultra Pure < 10 ppm (Fe < 1 ppm)

Stabilité pH : fonction de la modification physique et/ou chimiques

Guide de sélection des phases stationnaires Interchim®

minterchim

Guide de sélection des phases stationnaires Interchim®

Nom	Code ITM	USP Code	Ø Pore	Surface				partic			Greffage	Туре	% C,	End-Capping	
		Code			5	10	15	20 3) 50	μm					
Flash & Prep pour	Petites Mo	lécule	es Orga	aniques											
Uptisphere® Strategy™	C18-3	L1	100 Å	425 m²/g	Х	х	Х				C18 - octadécyle	Mono-fonctionnel	22,0 %	Multi step	
Uptisphere® Strategy™	C18-HQ	L1	100 Å	425 m²/g	Х	X	х				C18 - octadécyle	Mono-fonctionnel	19,0 %	Multi step	
Uptisphere® Strategy™	C18-RP	L1	100 Å	425 m ² /g	Х	Х	Х				C18 - octadécyle	Mono-fonctionnel	16,0 %	Multi step Mixte	
Uptisphere® Strategy™	PHC4	L11	100 Å	300 m ² /g	Х	χ	х				Phényl - Butyle	Mono-fonctionnel	12,0 %	One step	
Uptisphere® Strategy™	HILIC-HIT	L3	100 Å	425 m ² /g	X	χ	Х				Propriétaire	Propriétaire		Propriétaire	
Uptisphere® Strategy™	HILIC-HIA		100 Å		_	Х	Х				Propriétaire	Propriétaire		Propriétaire	
Uptisphere® Strategy™	SI	L3	100 Å	425 m²/g	Х	Х					Silice ultra pure			Non	
Uptisphere®	C18-NEC	L1	120 Å	320 m²/g	Х	Х	х				C18 - octadécyle	Mono-fonctionnel	16,0 %	Non	
Uptisphere®	CN	L10	120 Å	320 m ² /g	Х	Х					CN - cyano	Mono-fonctionnel	8,0 %	One step	
puriFlash® Prep	C18-XS	L1	100 Å	300 m²/g	х	х	Х	Х			C18 - octadécyle	Mono-fonctionnel	17,0 %	Multi-step	
puriFlash® Prep	C18-HP	L1	100 Å	300 m ² /g	Х	χ	Х	Х	Х		C18 - octadécyle	Mono-fonctionnel	16,5 %	One-step	
puriFlash® Prep	C18-AQ	L1	100 Å	300 m ² /g	X	χ	Х	Х			C18 - octadécyle	Mono-fonctionnel	14,0 %	Mixte	
puriFlash® Prep	RP-AQ	L7	60 Å	500 m ² /g			х	х			RP-alkyl	Mono-fonctionnel	6,0 %	Mixte	
puriFlash® Prep	Diol	L20	60 Å	500 m ² /g	(x)	Х	X	Х	Х		Diol	Mono-fonctionnel		Non	
puriFlash® Prep	SIHP	L3	60 Å	500 m ² /g	Х	χ	Х	Х	Х		Silice, grade HP			Non	
puriFlash® Prep	NH2	L8	100 Å	300 m²/g	Х	Х	χ	х	X		NH2 - amino	Mono-fonctionnel	4,0 %	One-step	
puriFlash®	IR-C18	L1	60 Å	450 m²/g					(x)		C18 - octadécyle	Mono-fonctionnel	20,0 %	One-step	
puriFlash®	MM1	L44	100 Å	400 m²/g					х		RP/SCX	Mono-fonctionnel	_	One-step	
puriFlash®	CN	L10	60 Å	500 m ² /g			Х		Х		CN - cyano	Mono-fonctionnel	5,0 %	One-step	
puriFlash®	SIHC	L3	60 Å	680 m ² /g			Х	(x) x		Silice, grade HC			Non	
puriFlash®	IR-SI	L3	60 Å	450 m ² /g				(x)	(x)		Silice Irrégulière			Non	
puriFlash®	SI-AGNO3		60 Å	500 m ² /g					Х		Silice/AgNO3			Non	
puriFlash®	NH2HC	L8	60 Å	680 m²/g					х		NH2 - amino	Poly-fonctionnel	4,0 %	Non	
puriFlash®	SCX	L50	100 Å	400 m ² /g					Х		Echange de cations fort	Mono-fonctionnel		Non	
puriFlash®	SAX	L14	60 Å	500 m ² /g					Х		Echange de cations fort	Mono-fonctionnel		Non	
puriFlash®	Х		100 Å	800 m ² /g						40	PSDVB			Non	
puriFlash®	P6		60 Å							100	Polyamide-6			Non	
puriFlash®	ALN		60 Å	200 m ² /g						32/63	Alumine neutre			Non	
puriFlash®	ALB		60 Å	200 m ² /g						32/63	Alumine basique			Non	
puriFlash®	AC									420/840	Carbone Activé			Non	
Daicel®	IA									20	Amylose tris (3,5-dimethylphenylcarbamate)			Non	
Daicel®	IC									20	Cellulose tris (3,5-dichlorophenylcarbamate)			Non	
Daicel®	ID									20	Amylose Tris (3-Chlorophenylcarbamate)			Non	
Daicel®	OD-I									20	Cellulose tris (3,5-dimethylphenylcarbamate)			Non	

Guide de sélection des phases stationnaires Interchim®

Stabilité pH	Mode d'utilisation	Application
1,0 - 12	Inverse	La forte densité de greffage facilite la séparation de composés trés apolaires. La technologie d'end-capping multi-étape garantit la stabilité sous des conditions de pH élevé. C'est une excellente phase stationnaire pour la séparation des molécules basiques jusqu'à pH: 12
1,0 - 10	Inverse	Convient à de nombreuses applications pharmaceutiques et aux méthodes de routine. Sa surface spécifique de 425m²/g lui procure une importante capacité de charge.
1,5 - 8,0	Inverse	Rétentive pour les composés moyennement et non-polaires. Son excellente stabilité mécanique en fait un très bon outil pour l'analyse et la purification.
1,5 - 7,5	Inverse	Très sélective pour les composés ayant des cycles aromatiques et les moyennement polaires.
1,5 - 7,0	Hilic	Séparation des molécules très polaires en mode hilic (ANP). Phase mobile typique : H ₂ 0 / ACN (> 70%)
2,0 - 7,0	Hilic	Séparation des molécules très polaires en mode hilic (ANP). Phase mobile typique : H ₂ 0 / ACN (> 70%)
1,5 - 7,0	Normale	Spécifique des molécules non-ioniques et des molécules organiques polaires.
1,5 - 6,5	Inverse	Retiens fortement les polaires et moyennement polaires. Bonne symmétrie de pics avec les composés contenant des chaînes alkyles, et/ou des cycles de carbone combinés avec de nombreux groupes polaires.
2,0 - 7,0	Inverse / Normale	La fonction cyano permet la purification des composés polaires en phase normale et des composés moyennement polaires en phase inverse.
1,0 - 10,0	Inverse	La technologie propriétaire d'end-capping multi-étape garantit la stabilité sous des conditions de pH élévé, jusqu'à 10. C'est une excellente phase pour la séparation complète des molécules basiques.
1,5 - 7,5	Inverse	Convient à de multiples applications pharmaceutiques. C'est un excellent choix pour les purifications de routine en phase inverse.
2,0 - 7,5	Inverse	La chimie de greffage permet de démarrer un gradient par 100% d'eau. Adapté à la séparation et purification des molécules moyennement polaires et apolaires.
2,0 - 7,5	Inverse	La chimie de greffage permet de démarrer un gradient par 100% d'eau. Adapté à la séparation et purification des molécules fortement et moyennement polaires. Comparés à une C18, les pics sont élués à partir du début du gradient.
1,5 - 6,5	Normale	La fonction Diol confère une surface globallement neutre à la silice. Cela permet une meilleure séparation des molécules basiques en phase normale par rapport à la silice.
1,5 - 6,5	Normale	Spécifique des molécules non-ioniques et des molécules organiques polaires.
2,0 - 6,5	Inverse / Normale / Echange d'ions	A la fois un échangeur d'anions faible pour les acides forts, ou bien phase polaire pouvant intéragir avec les fonctions OH, NH, SH
1,5 - 7,0	Inverse	Répond aux exigences de la purification des composés apolaires.
1,0 - 7,5	Inverse / Echange d'ions	Le greffage mixte hydrophobe et échanges d'ions lui confère une sélectivité unique. Les composés qui possédent une fonction basique sont retenus par l'échangeur d'ions. Un solvant organique éluera les composés hydrophobes.
1,5 - 7,5	Inverse / Normale	La fonction cyano permet la purification des composés polaires en phase normale et des composés moyennement polaires en phase inverse.
1,5 - 6,5	Normale	Spécifique des molécules non-ioniques et des molécules organiques polaires.
1,5 - 6,5	Normale	Spécifique des molécules non-ioniques et des molécules organiques polaires.
1,5 - 6,5		Purification de stéréo-isomères en phase normale.
1,5 - 6,5	Inverse / Normale / Echange d'ions	A la fois échangeur d'anions faible pour les acides forts, ou bien phase polaire pouvant intéragir avec les fonctions OH, NH, SH
1,0 - 7,5	Echange d'ions	Echangeur de cations fort contenant des acides sulfoniques permettant de purifier des molécules faiblement basiques ayant une ou plusieurs charges positives.
1,0 - 7,5	Echange d'ions	Echangeur d'anions fort contenant des amines quaternaires permettant de purifier des molécules faiblement acides ayant une ou plusieurs charges négatives.
1,0 - 13	Inverse	Polymère universel de grande surface spécifique pour la purification de composés hydrophobes dans des conditions de pH de 1 to 14.
		Sélective envers les flavones, anthraquinones, les composés aromatiques nitrés, les phénols, les acides sulfoniques et carboxyliques, les amines, les amides,
		Composés polaires non-ioniques.
		Composés polaires non-ioniques.
		Décolorisation.
		Purification de composés chiraux.

Phase Normale

puriFlash® IR-SI

60 Å - 450 m²/g 20 & 40/63 µm Stabilité pH : 1.5 à 6.5 Economique

puriFlash® SI-HP

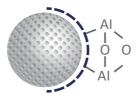
60 Å - 500 m²/g 5, 10, 15, 30 & 50 µm Stabilité pH : 1.5 à 6.5 Haute éfficacité

puriFlash® SI-HC

60 Å - 680 m²/g 15, 25 & 50 µm Stabilité pH : 1.5 à 6.5 Capacité de charge et productivité

Faible contre-presssion

OH OH

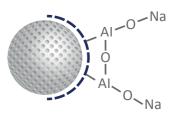

puriFlash® SI-AgNO,

60 Å - 500 m²/g 50 μm

Stabilité pH : 1.5 à 6.5

Purification de stéréo-isomères cis /

trans


ALN - Neutral

60 Å - 200 m²/g 32/63 µm

Stabilité pH: 1.0 à 12.0

Produits Naturels, Huiles Essentielles, Antibio-

tiques, Vitamines, Alkaloides...

ALB - Basique

60 Å - 200 m²/g 32/63 µm

Stabilité pH: 1.0 à 12.0

Extraction de plantes, purification de solvants

organiques, Alkaloides...

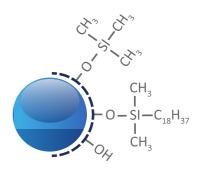
Colonnes à usage unique

Application générale: Molécules organiques non-ionique & polaires

Notes : Influence de la quantité d'eau

La quantité d'eau contenue dans les silices constituant les plaques CCM et celles utilisées pour fabriquer les colonnes de purification sont différentes.

Flash : Gel de silice pour CCM = 6 - 6.5 %Gel de silice sphérique flash < ou = 2.0 %



"interchim"

Phase Inverse

SI CH.

puriFlash® RP-AQ

60 Å - 500 m²/g 15 & 30 µm RP-alkvl %C:6 End-capping: Mixte

Stabilité pH: 2.0 à 7.5

La chimie de greffage permet de démarrer la purification avec un gradient à 100% d'eau.

Adaptée à la purification des molécules fortement ou movennement polaires. Comparé aux C18 classique, les pics sont élués plus tôt, en début de gradient.

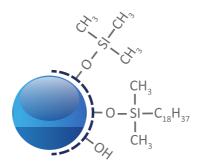
puriFlash® C18-AQ

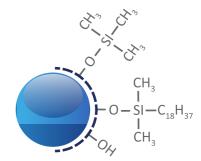
100 Å - 300 m²/g 5, 10, 15 & 30 µm C18 Mono-fonctionnel %C:14

End-capping: Mixte Stabilité pH: 2.0 à 7.5

La chimie de greffage permet de démarrer un gradient par 100% d'eau.

Adapté à la séparation et purification des molécules movennement polaires et apolaires.


puriFlash® C18-HP


100 Å - 300 m²/g 5, 10, 15, 30 & 50 µm C18 Mono-fonctionnel %C:16.5

End-capping: One-step Stabilité pH: 1.5 à 7.5

Convient à de multiples applications pharmaceutiques. C'est un excellent choix pour les purifications de routine en phase inverse.

USP code: L1 Colonne réutilisable Application générale : Composés organiques moyennement et fortement apolaires

Uptisphere® Strategy™ C18-HQ

100 Å - 425 m²/a 1.7, 2.2, 3, 5, 10, 15 µm C18 Mono-fonctionnel

%C:19

End-capping: Multi-step Stabilité pH: 1.0 à 10.0

Convient à de nombreuses applications pharmaceutiques et aux méthodes de routine.

Sa surface spécifique de 425 m²/g lui procure une

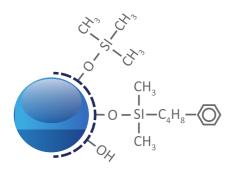
importante capacité de charge.

puriFlash® C18-XS

100 Å - 300 m²/g 5, 10, 15 & 30 µm C18 Mono-fonctionnel %C:17

End-capping: Multi-step Stabilité pH: 1 à 10.0

La technologie propriétaire d'end-capping multiétapes garantit la stabilité sous des conditions de

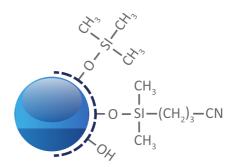

pH élévé, jusqu'à 10.

C'est une excellente phase pour la séparation complète des molécules basiques.

minterchim

Phase Inverse

Uptisphere® Strategy™ PHC4

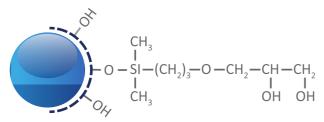

100 Å - 300 m²/g 2.2, 3, 5, 10, 15 μm PH C4 Mono-fonctionnel %C : 12

End-capping : One-step Stabilité pH : 1.5 à 7.5

Très sélective pour les composés ayant des cycles aromatiques et les

moyennement polaires.

Phase Inverse / Normale

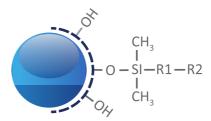

puriFlash® CN

60 Å - 500 m²/g 15 & 50 μm CN Mono-fonctionnel %C : 5

End-capping : One-step Stabilité pH : 1.5 à 7.5

La fonction cyano permet la purification des composés polaires en phase normale et des composés moyennement polaires en phase inverse.

Phase Normale / Hilic



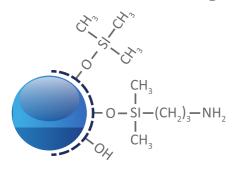
puriFlash® Diol

60 Å - 500 m²/g 5, 10, 15, 30 & 50 μ m Diol Mono-fonctionnel End-capping : non Stabilité pH : 1.5 à 6.5

La fonction Diol confère une surface globalement neutre à la silice. Cela permet une meilleure séparation des molécules basiques en phase normale par rapport à la silice.

Hilic

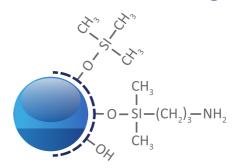
Uptisphere® Strategy™ Hilic-HIA


100 Å - 300 m²/g 2.2, 3, 5, 10, 15 μ m Greffage propriétaire Stabilité pH : 2.0 à 7.0

Séparation des molécules très polaires en mode hilic (ANP).

Phase mobile typique: H20 / ACN (> 70 %).

Phase Normale / Echange d'ions

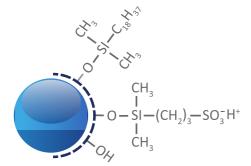

puriFlash® NH2-HC

60 Å - 680 m²/g 50 µm Amino %C : 4

End-capping : n.c Stabilité pH : 1.5 à 6.5

A la fois un échangeur d'anions faible pour les acides forts ou bien phase polaire pouvant intéragir avec les fonctions OH. NH. SH ...

Phase Normale / Echange d'ions


puriFlash® NH2

100 Å - 300 m²/g 5, 10, 15, 30 & 50 μm Amino % C : 4

End-capping : One-step Stabilité pH : 2 à 6.5

A la fois un échangeur d'anions faible pour les acides forts ou bien phase polaire pouvant intéragir avec les fonctions OH, NH, SH ...

Phase Inverse / Echange d'ions

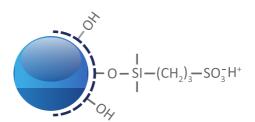
puriFlash® MM1

100 Å - 400 m²/g

50 µm

RP alkyl / Echange d'ions fort - SCX

0.1 meq/g


End-capping : One-step Stabilité pH : 1.0 à 7.5

Le greffage mixte hydrophobe et échanges d'ions lui confère une selectivité

unique

Les composés qui possédent une fonction basique sont retenus par l'échangeur d'ions. Un solvant organique éluera les composés hydrophobes.

Echange d'ions

puriFlash® SCX

100 Å - 400 m²/g

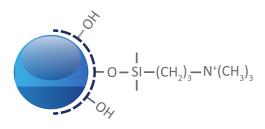
50 µm

Echange d'ions fort - SCX

0.3 meq/g

End-capping : Non Stabilité pH : 1.0 à 7.5

Echangeur de cations fort contenant des acides sulfoniques permettant de purifier des molécules faiblement basiques ayant une ou plusieurs charges positives.



Purification

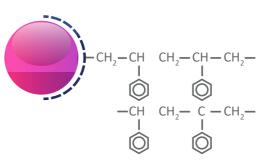
Phase stationnaire: SAX - Atoll - Polyamide 6

minterchim

Echange d'ions

puriFlash® SAX

60 Å - 500 m²/g 50 μm

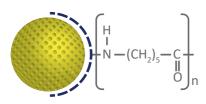

Echange d'anions fort - SAX

0.3 meq/g End-capping : Non

Stabilité pH: 1.0 à 7.5

Echangeur d'anions fort contenant des amines quaternaires permettant de purifier des molécules faiblement acides ayant une ou plusieurs charges négatives.

Phase Inverse


Ultra-Pur PSDVB (Atoll X)

100 Å - 800 m²/g

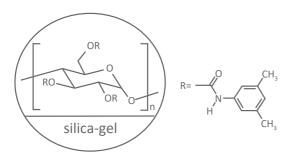
40 µm

Stabilité pH: 1.0 à 13.0

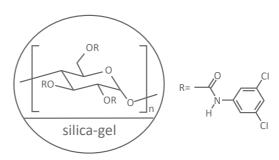
Un polymère universel avec une grande surface spécifique pour la purification des composés moyennement, et non polaires avec Mw <5 KD dans des conditions de pH de 1 à 13.

Polyamide 6

60 Å - 100 µm Stabilité pH : n.c.


Sélectif vis-à-vis des flavones, des anthraquinones, des composés aromatiques, des nitrates, des phénols, des acides sulfoniques et des acides carboxyliques, des amines, des amides, etc ...

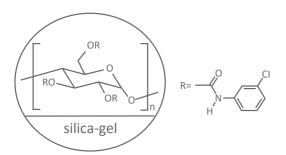
Phase stationnaire Chiral


IA chiral

20 µm

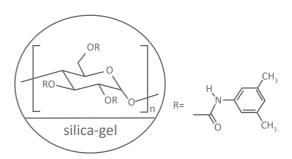
Amylose tris-(3.5-dimethylphenyl carbamate)

Immobilisé sur gel de silice


Composés chiraux en phase normale et inverse tels que Bupivacaïne, Indapamide, Suprofern ...

IC chiral

20 µm


Cellulose tris-(3.5-dichlorophenylcarbamate) Immobilisé sur gel de silice Composés chiraux en phase normale et inverse, tels que l'Econazole, l'Indoprofène, le 5-Fluoro-1 (tétrahydro-2-furyl) uracile, etc.

ID chiral

20 um

Amylose tris-(3-Chlorophenylcarbamate) Immobilisé sur gel de silice Composés chiraux en phase normale et inverse tels que (±) -Hydrobenzoïne, Sulconazole, acide Tropique ...

OD-I chiral

20 um

Cellulose tris-(3.5 dimethylphenylcarbamate) Immobilisé sur gel de silice Composés chiraux en phase normale et inverse tels que le 2-bromométhyl-1,4-benzodioxane, le pindolol, base de Troger, etc.

minterchim

Code	F0001	F0004	F0012	F0025	F0040	F0080	F0120	F0220	F0330	F0800	F1600
Ø int. (mm)	9	12	21	21	27	31	36	60	60	78	104
L (mm)	26	68	84	133	135	205	224	153	226	341	385
CV ₀ (mL)	1.2	5	19	32	48	102	153	269	405	1 078	2 170
Débit - typique (mL / min)	2.5	5	15	15	26	34	46	127	127	216	383
Gamme de débit (mL / min)	1 - 10	5 - 20	15 - 50	15 - 50	20 - 70	30 -100	40 - 150	80 - 300	80 - 300	150 - 300	200 - 500

Les colonnes flash remplies avec de la silice vierge non gréffée sont à usage unique.

Les colonnes flash remplies avec de la silice modifiée peuvent être réutilisées. Le nombre d'utilisation dépend principalement de la nature du brut à purifier, des conditions de la méthode et des critères de pureté recherchés.

Minterchim

Colonne Interchim® prep-LC

Les colonnes préparatives Interchim® sont disponibles de 10,0 à 50 mm i.d pour la purification d'échantillons allant du mg au g.

Corps de colonne & remplissage

La valeur de polissage du tube "Ra " a une importance fondamentale dans la chromatographie préparative. Une raison principale pour l'élargissement du pic et une faible efficacité est l'utilisation d'une qualité matérielle médiocre.

Lorsque la phase mobile est ralentie près de la paroi de la colonne, les molécules situées au centre du courant de phase mobile se déplacent plus rapidement que les molécules plus proches du côté.

Toutes les colonnes ont des surfaces internes extrêmement lisses (typiquement 8 µ pouces de Ra) pour réduire considérablement les problèmes de traînée et maintenir l'efficacité de la colonne. L'efficacité est également gérée grâce aux procédés de remplissages exclusifs d'Interchim[®]. Les colonnes Prep Interchim[®] supportent des pressions de remplissage allant jusqu'à 550 bar, contribuant ainsi fortement à une bonne stabilité du lit et à la durée de vie de la colonne.

Dispersion d'échantillon

Le chargement de l'échantillon sur une colonne préparative nécessite une gestion rigoureuse pour établir des séparations de qualité. La surcharge de la colonne entraîne une mauvaise rétention de la fraction pure et, par conséquent, une attention particulière doit être accordée à la sélection de la dimension de colonne appropriée et des propriétés de la phase stationnaire. De plus, un contrôle minutieux de l'introduction de l'échantillon dans la colonne est nécessaire pour établir sa dispersion homogène sur toute la surface du lit de phase. L'échantillon pénètre généralement dans une colonne préparative à travers un raccord de 1/16". Un chargement insuffisant de l'échantillon entraînera une surcharge de certaines zones de la phase stationnaire tandis que d'autres zones seront sous-chargées. Exemple: Pour une colonne i.d de 50 mm avec un raccord capillaire i.d de 500 um - l'échantillon introduit sur la colonne (sans distributeur d'échantillon) n'interagira qu'avec 0,01% de la tête de la colonne de surface. En plus d'une perte de capacité importante, la tête de la colonne risque également de se boucher prématurément, ce qui réduit rapidement la durée de vie de la colonne.

Pour éviter ce problème, les colonnes Préparative d'Interchim® sont équipées d'un diffuseur d'échantillons. Sa conception maximise l'efficacité de la dispersion du volume d'échantillon et la masse d'échantillon introduite à la surface de la tête de colonne.Il augmente la durée de vie de la colonne.

Colonnes DAC Interchim®

Le système DAC, synonyme de compression axiale dynamique, combine de façon unique la colonne préparative et le système de remplissage. Très simple, la colonne peut être utilisée en ligne lorsqu'elle est remplie.

Le piston de la colonne produit toujours une pression stable sur le lit de phase, ce qui empêche son affaissement ou sa détérioration rapide. Elles peuvent être remplies avec des particules de petites tailles pour atteindre des niveaux élevés de performance.

Material: 316 L

Rugosité de la surface intérieure Ra ≤ 0.4 µm

• Fritté: 316 L porosité: 3-5 µm Joint haute pression PTFE & 316 L

• Temperature : 5-60°C

• Panneau de commande : manomètre d'air, jauge d'huile, vanne de régulation, interrupteur d'arrêt d'urgence, vanne de changement de direction, vanne d'arrêt

Air ≥ 6 bar, débit ≥ 8 m³/min

Réf.	Format	ø int.	Hauteur de lit	Inlet/Outlet	Dimensions	Poids
KV7350	DAC ID50	50 mm	300 mm	1/16"	550 mm x 500 mm x 1900 mm	100 kg
KV7370	DAC ID80	80 mm	300 mm	1/8"	550 mm x 600 mm x 2200 mm	200 kg
KV7390	DAC ID100	100 mm	300 mm	1/8"	550 mm x 600 mm x 2200 mm	250 kg

Nos technologies de silice Interchim®

Toutes nos silices Uptisphere® (120Å, CS Evolution, Strategy™, puriFlash® & puriFlash® Bio suivent des processus de fabrication rigoureux et innovants. Les silices bases sont produites dans des réacteurs céramiques à partir de particules standard pour la purification ou totalement exemptes de toutes traces de métaux pour l'analyse. Chacune des différentes étapes de synthèse est strictement contrôlée.

Cette rigueur conduit à l'obtention de particules extrêmement stables mécaniquement. Les distributions de granulométrie et de porosité ainsi que les surfaces spécifiques sont parfaitement définies et reproductibles.

Nos silices puriFlash® & puriFlash® Bio sont spécifiquement conçues pour répondre aux contraintes de la chromatographie liquide préparative. Elles allient qualité et respect des coûts associés à cette technique.

Nos silices présentent trois avantages majeurs :

- Un parfait contrôle de l'état de surface.
 Nous modifions physiquement ou chimiquement la surface de la silice pour choisir le type, la quantité de silanols ou l'énergie globale de surface en fonction de l'objectif à atteindre.
- 2. Des pores cylindriques. La quantité de silanols libres et leur excellente accessibilité permet d'obtenir une fonctionnalisation (greffage) homogène et particulièrement dense. Il en découle une très bonne capacité de charge et une bonne stabilité de ces phases stationnaires sous des conditions de phases mobiles agressives telles que les tampons basiques.
- 3. Une grande stabilité mécanique. Nos phases stationnaires peuvent supporter de multiples "packages" et "dé-packages" sans dommage pour l'intégrité du support. Elles sont un outil de choix pour la chromatographie préparative.

Silices modifiées

Le Laboratoire d'Etude des Techniques et des Instruments d'Analyse Moléculaire (LETIAM), unité constitutive du groupe de chimie analytique de Paris Sud implantée à l'IUT d'Orsay, a joué un rôle fondamental dans notre réflexion qui a conduit au développement de nos phases stationnaires.

Le laboratoire des Sciences et Méthodes Séparatives - (SMS) de l'Institut de Recherche en Chimie Organique Fine - (IRCOF) a concrétisé une partie de nos idées en développant des schémas de synthèse innovants pour la modification de nos silices "Core-Shell" Uptisphere® CS Evolution.

C'est une cinquantaine de sélectivités que nous proposons aujourd'hui pour répondre à l'ensemble des besoins des analystes et des chimistes pour l'identification, la quantification et la purification des petites molécules organiques, des peptides et des protéines.

Silice base : standard Pure & Ultra pure (99,995 %)

Particules : irrégulières, granulaires, sphériques

Granulométrie : 1,7 μ m [+/- 0,1] 2,2 μ m [+/- 0,15] 2,5 - 2,6 μ m [+/- 0,1] 3 - 3,5 μ m [+/- 0,2] 5 μ m [+/- 0,3] 10 μ m [+/- 1,0] 15 μ m [+/- 2,0] 25 - 30 μ m [+/- 5] 50 μ m [+/- 10]

Surface / Porosité : $60 \ \mathring{A} \ [+/-\ 10] \ / \ 500 \ m^2/g \ [+/-\ 50] \\ 85 \ \mathring{A} \ [+/-\ 5] \ / \ 130 \ m^2/g \ [+/-\ 25] \\ 100 \ \mathring{A} \ [+/-\ 15] \ / \ 425 \ m^2/g \ [+/-\ 40] \\ 120 \ \mathring{A} \ [+/-\ 15] \ / \ 320 \ m^2/g \ [+/-\ 40] \\ 130 \ \mathring{A} \ [+/-\ 15] \ / \ 300 \ m^2/g \ [+/-\ 40] \\ 200 \ \mathring{A} \ [+/-\ 15] \ / \ 150 \ m^2/g \ [+/-\ 40] \\ 220 \ \mathring{A} \ [+/-\ 15] \ / \ 200 \ m^2/g \ [+/-\ 40] \\ 300 \ \mathring{A} \ [+/-\ 40] \ / \ 100 \ m^2/g \ [+/-\ 20] \\ \label{eq:monopolicy}$

Taux de métaux : Standard Pure < 500 ppm - Ultra Pure < 10 ppm (Fe < 1 ppm)

Stabilité pH : fonction de la modification physique et/ou chimiques

PurificationGuide de sélection des phases stationnaires Interchim®

minterchim

Guide de sélection des phases stationnaires Interchim®

Nom	Code ITM	USP Code	Ø Pore	Surface	5			e part 20			μm μm	Greffage	Туре	% C,	End-Capping
Flash & Prep pour	Bio-Purifi	cation													
puriFlash® Bio 100	C18-N	L1	100 Å	320 m ² /g	Х	х	χ		Х			C18 - octadécyle	Mono-fonctionnel	15,5 %	Non
puriFlash® Bio 100	C18-T	L1	100 Å	320 m²/g	Х	Х	Х		Х			C18 - octadécyle	Tri-fonctionnel	17,0 %	One-step
puriFlash® Bio 100	C18-XS	L1	100 Å	320 m²/g	Х	Х	Х		Х			C18 - octadécyle	Mono-fonctionnel	17,0 %	Multi-step
puriFlash® Bio 200	C18-N	L1	200 Å	200 m ² /g	Х	Х	Х		Х			C18 - octadécyle	Mono-fonctionnel	7,0 %	Non
puriFlash® Bio 200	C18-T	L1	200 Å	200 m ² /g	Х	Х	Х		Х			C18 - octadécyle	Tri-fonctionnel	10,0 %	One-step
puriFlash® Bio 200	C18-XS	L1	200 Å	200 m ² /g	Х	Х	X		X			C18 - octadécyle	Mono-fonctionnel	8,0 %	Multi-step
puriFlash® Bio 200	C8-N	L7	200 Å	200 m ² /g	Х	Х	Х		Х			C8 - octyle	Mono-fonctionnel	5,0 %	Non
puriFlash® Bio 300	C4-AQ	L26	300 Å	100 m ² /g	Х	Х	Х		Х			C4 - butyle	Mono-fonctionnel	3,0 %	Mixte
puriFlash® Bio 200	RPNH		200 Å	200 m ² /g	Х	Х	Х		Х			RP - Chaînes Alkyles / Amines	Mono-fonctionnel	4,0 %	Non
puriFlash® Bio 300	RPNH		300 Å	100 m ² /g	Х	Х	Х		Х			RP - Chaînes Alkyles / Amines	Mono-fonctionnel	2,0 %	Non
puriFlash® Bio 200	RP		200 Å	200 m ² /g							45	RP - Chaînes Alkyles	Mono-fonctionnel	5,0 %	Mixte
puriFlash® Bio 300	RPT		300 Å	100 m ² /g						Х		RP - Chaînes Alkyles	Tri-fonctionnel	3,0 %	One-step
puriFlash® PT	C18-AQ	L1	200 Å	150 m²/g			Х					C18 - octadécyle	Mono-fonctionnel	12,0 %	Mixte
puriFlash® PT	C8	L7	200 Å	150 m ² /g			Х					C8 - octyle	Mono-fonctionnel	5,0 %	One step
puriFlash® PT	C4	L26	200 Å	150 m ² /g			Х					C4 - butyle	Mono-fonctionnel	3,0 %	One step
puriFlash® PP	C18	L1	300 Å	100 m ² /g			Х					C18 - octadécyle	Mono-fonctionnel	10,0 %	One step
puriFlash® PP	C4	L26	300 Å	100 m ² /g			Χ					C4 - butyle	Mono-fonctionnel	3,0 %	One step
Uptisphere® X-Serie	OD2	L1	130 Å	300 m²/g	Х							C18 - octadécyle	Poly-fonctionnel type II	20,0 %	Multi-step
Uptisphere® X-Serie	C18-AQ	L1	220 Å	200 m ² /g	Х							C18 - octadécyle	Poly-fonctionnel type II	14,0 %	Mixte
Uptisphere® X-Serie	C8	L7	220 Å	200 m ² /g	Х							C8 - octyle	Poly-fonctionnel type II	8,0 %	Multi-step
Uptisphere® 300Å	WOD	L1	300 Å	100 m ² /g	Х							C18 - octadécyle	Mono-fonctionnel	10,0 %	One step
Uptisphere® 300Å	WC4	L26	300 Å	100 m ² /g	Х							C4 - butyle	Mono-fonctionnel	4,0 %	One step
Uptisphere® 300Å	WD4	L26	300 Å	100 m ² /g	χ							C4 - butyle	Poly-fonctionnel type I	4,0 %	One step
Vydac direct alternative															
Uptisphere® TP	TP18	L1	300 Å	100 m ² /g	Х	Х	Х					C18 - octadécyle	Poly-fonctionnel	8,0 %	One step
Uptisphere® TP	TP14	L26	300 Å	100 m ² /g	Х	Х	Х					C4 - butyle	Poly-fonctionnel	3,5 %	One step

Purification Guide de sélection des phases stationnaires Interchim®

minterchim

Stabilité pH	Mode d'utilisation	Application
1,5 - 8,0	Inverse	Contrôle Qualité en ligne de la synthèse peptidique. Analyse & Purification des peptides polaires de moins de 40AA & mw jusqu'à 5KDa en conditions pseudo hilic, 85% -to- 95% ACN. Analyse & Purification des peptides hydrophobes de moins de 40AA & mw. jusqu'à 5KDa
1,5 - 8,0	Inverse	Analyse & Purification des peptides moyennement polaires & apolaires, des peptides hydrophobes de moins de 40AA & mw jusqu'à 5KDa.
1,0 - 10,0	Inverse	Analyse & Purification des peptides moyennement polaires & apolaires, des peptides hydrpphobes de moins de 40AA & mw jusqu'à 5KDa sous des conditions de phase mobile basique jusqu'à pH: 10.0.
1,5 - 8,0	Inverse	Analyses & Purification de peptides polaires de moins de 160AA & mw. jusqu'à 20KDa en conditions pseudo hilic, 85% -to- 95% ACN. Analysis & Purification des peptides hydrophobes de moins de 80AA & mw jusqu'à 10KDa.
1,5 - 8,0	Inverse	Analyse & Purification des peptides moyennement polaires & apolaires, des peptides hydrophobes de moins de 80AA & mw jusqu'à 10KDa.
1,0 - 10,0	Inverse	Analyse & Purification des peptides moyennement polaires & apolaires, des peptides hydrophobes de moins de 80AA & mw jusqu'à 10KDa sous des conditions de phase mobile basique jusqu'à pH: 10.0.
1,5 - 8,0	Inverse	Analyse & Purification des peptides moyennement polaires & apolaires, des peptides hydrophobes de moins de 160AA & mw jusqu'à 20KDa.
1,5 - 8,0	Inverse	Analyse & Purification des peptides naturels, acides gras de plus de 80AA et jusqu'à mw 100KDa.
1,5 - 8,0	Inverse / Echange d'Ions	Analyse & Purification des oligonucléotides jusqu'à 40 mer.
1,5 - 8,0	Inverse / Echange d'Ions	Analyse & Purification de large oligos, aptamers, DNA.
1,5 - 8,0	Inverse	Dessalage des peptides synthétiques.
1,5 - 8,0	Inverse	Clarification des cultures cellulaires pendant le bioprocess par "Host Cell Fishing". Elimination des proteines et de l'ADN des cellules hôtes durant les étapes du bioprocédé contenant l'anticorps monoclonal recombinant.
1,5 - 8	Inverse	Bio-Médicaments moyennement polaires et peptides de poids moléculaire moyen. Compatible avec des phases mobiles 100% aqueuses.
1,5 - 8	Inverse	Bio-Médicaments et peptides de poids moléculaire moyen.
1,5 - 8	Inverse	Bio-Médicaments et peptides de haut poids moléculaire.
1,5 - 8	Inverse	Peptides & oligopeptides faiblement hydrophobes jusqu'à 50 kD.
1,5 - 8	Inverse	Proteines & polypeptides hydrophobes, de 50 à 150 kD.
1 - 13	Inverse	Bio-Médicaments de faible poids moléculaire.
1 - 10	Inverse	Bio-Médicaments moyennement polaires et peptides de poids moléculaire moyen. Compatible avec des phases mobiles 100% aqueuses.
1 - 13	Inverse	Bio-Médicaments et peptides de poids moléculaire moyen.
1,5 - 7	Inverse	Peptides & oligopeptides faiblement hydrophobes jusqu'à 50 kD.
2-7	Inverse	Protéines & polypeptides hydrophobes, de 50 à 150 kD.
1,5 - 8	Inverse	Protéines & polypeptides très hydrophobes, de 50 à 150 kD.
1,5 - 7	Inverse	Peptides & oligopeptides faiblement hydrophobes jusqu'à 50 kD.
2-7	Inverse	Protéines & polypeptides hydrophobes, de 50 à 150 kD.

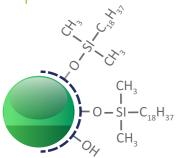
minterchim

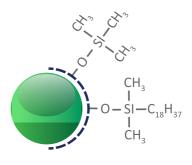
Guide de sélection

Peptide	Polaire	Moyennement & non-polaire	Hydrophobe	Naturel, Acide Gras			
< 40AA MW: jusqu'à 5KDa							
pH: 1.5 à 8.0	puriFlash® BIO 100 C18N	puriFlash® BIO 100 C18T	Screening puriFlash® BIO 100 (C18N /C18T)				
max. pH: 10		puriFlash® BIO 100 C18XS	puriFlash® BIO 100 C18XS				
< 80AA MW: jusqu'à 10KDa							
рН: 1.5 à 8.0	puriFlash® BIO 200 C18N	puriFlash® BIO 200 C18T	Screening puriFlash® BIO				
max. pH: 10		puriFlash® BIO 200 C18XS	200 (C18N /C18T) puriFlash® BIO 200 C18XS				
< 160AA							
MW: jusqu'à 20KDa	puriFlash® BIO	puriFlash® BIO 200 C8N	puriFlash® BIO 200 C8N				
	255 51511	250 0014	200 0011				
< 80AA MW: jusqu'à 100KDa							
pH: 1.5 à 8.0				puriFlash® BIO 300 C4AQ			
In-Process QA/QC / Sy	ynthèse Peptidique	In-Process QA/QC / Synthèse Peptidique puriFlash® BIO CS 2.6C18N => puriFlash® BIO 100 2.5C18N					

<u></u>interchim

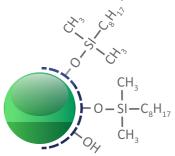
Notes:


Peptides polaires => Mode hilic utilisant un % supérieur d'ACN 95 à 85%


Peptides hydrophobes => il est utile de travailler avec de l'eau / ACN en utilisant quelques % d'acide formique ou 0,05% de TFA ~ pH 2. Si vos peptides contiennent de la lysine, de l'arginine, etc., il est préférable d'avoir un environnement basique. Vous avez besoin d'un vrai tampon et, selon la solubilité du tampon, il est préférable de passer à MeOH au lieu de ACN. Habituellement, les gradients pseudo-isocratiques ou très plats conduisent à la plus grande capacité.

"interchim"

Peptides


puriFlash® BIO C18-N

100 Å - 320 m²/g 2.5, 3.5, 5, 10, $\overline{15}$ & 30 μm C18 - octadécyle Mono-fonctionnel %C: 15.0 End-capping: non Stabilité pH: 1.5 à 8.0 Mode: Inverse

Contrôle Qualité en ligne de la synthèse peptidique.

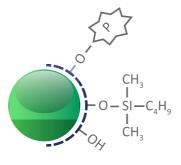
Analyse & Purification des peptides polaires de moins de 40 AA & mw. Jusqu'à 5 KDa en conditions pseudo hilic, 85 % à 95 % ACN.

Analyse & Purification des peptides hydrophobes de moins de 40 AA & mw. Jusqu'à 5 KDa.

puriFlash® BIO C18-T

100 Å - 320 m²/g $2.5, 3.5, 5, 10, 15 \& 30 \mu m$ C18 - octadécyle Tri-fonctionnel %C: 17.0

End-capping: One-step Stabilité pH: 1.5 à 8.0 Mode: Inverse


Analyse & Purification des peptides moyennement polaires & apolaires, des peptides hydrophobes de moins de 40AA & mw. Jusqu'à 5 KDa

puriFlash® BIO C18-XS

100 Å - 320 m²/g 2.5, 3.5, 5, 10, 15 & 30 µm C18 - octadécyle Mono-fonctionnel %C: 17.0

End-capping: Multi-step Stabilité pH: 1.0 à 10.0 Mode: Inverse

Analyse & Purification des peptides moyennement polaires & apolaires, des peptides hydrophobes de moins de 40 AA & mw. Jusqu'à 5 KDa sous des conditions de phase mobile basique. Jusqu'à pH: 10.0

puriFlash® BIO C8-N

200 Å - 200 m²/g $2.5, 3.5, 5, 10, 15 \& 30 \ \mu m$ C18 - octadécyle Mono-fonctionnel %C:7.0

End-capping: Non Stabilité pH: 1.5 à 8.0 Mode: Inverse

Analyse & Purification des peptides moyennement polaires & apolaires, des peptides hydrophobes de moins de 160AA & mw. Jusqu'à 20 KDa.

puriFlash® BIO C4-AQ

300 Å - 100 m²/g 3.5, 5, 10, 15 & 30 µm C4 - butyle Mono-fonctionnel %C: 3.0 End-capping: Mixte

Stabilité pH: 1.5 à 8.0 Mode: Inverse

Analyse & Purification des peptides naturels, acides gras de plus de 80 AA et jusqu'à mw.

100 KDa.

