A.62

Introduction

Un livre référence en SPE

Description

Réf. ZZ3801 Forensic and clinical applications of SPE

Préambule

Partie intégrante d'une analyse, la préparation d'échantillons a considérablement évolué ces dernières années. C'est sans aucun doute l'étape la plus importante du processus analytique. Certaines études montrent que la préparation d'échantillons représente en général environ 60% du temps de travail d'un technicien de laboratoire et qu'elle est l'une des principales sources d'erreurs entachant le résultat de l'analyse. Avec ce constat, on comprend mieux pourquoi une bonne préparation d'échantillons influe directement sur la limite de détection, la reproductibilité et la répétabilité de l'analyse. Son impact sur la qualité de l'analyse est fondamental.

La multitude de matrices à traiter (sang, plasma, eaux, organes, viandes, poissons, légumes,...) nécessitent l'emploi de techniques variées : filtration, dialyse, extraction liquide - liquide, extraction sur phase solide (SPE). Parmi celles-ci, l'extraction en phase solide est certainement la technique qui a le plus évolué dans la dernière décennie. Elle est aujourd'hui présente dans la plupart des laboratoires et permet de réaliser des purifications et une concentration efficaces de l'échantillon avant l'analyse HPLC, HPLC/MS, GC ou GC/MS. Le niveau de qualité requis pour les produits de SPE s'est donc renforcé. Ainsi, de nouvelles innovations technologiques telles que les polymères à hautes surfaces spécifiques, les polymères échange d'ions et les silices sphériques pures sont devenues incontournables.

Rendement, capacité, sélectivité, reproductibilité sont les principales vertus qu'attendent les analystes de leurs méthodes de traitement d'échantillon. Grâce à leur expérience, nos laboratoires ont développé la marque Upti-Clean, supports silices sphériques pures ainsi que les marques Atoll, PolyClean et BioP, polymères sphériques ultrapurs.

Ces gammes de produits répondent parfaitement aux besoins des méhodes modernes et concourent à les rendre plus fiables, plus reproductibles et plus robustes.

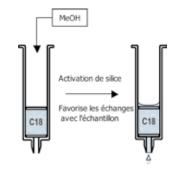
Méthodologie générale SPE

Tous les adsorbants remplis dans des cartouches, colonnes ou plaques 96 puits sont à usage unique (exceptées les colonnes de trapping "on-line" montées en ligne sur un système HPLC). L'utilisation d'appareil est recommandée pour la percolation des différents solvants (appareil à vide, appareil à pression positive, seringues).

Le choix de la colonne est défini par le volume de l'échantillon, sa concentration en analytes et les types d'échanges recherchés. Dans l'environnement, des volumes de plusieurs centaines de millilitres peuvent être nécessaires pour une bonne pré-concentration (ex. : polluants organiques). En revanche, dans l'industrie pharmaceutique, le volume des échantillons à purifier n'est que de quelques millilitres. L'adsorbant choisi doit avoir une excellente affinité pour les composés cibles. Il doit également présenter un minimum d'affinité avec les interférents de la matrice.

Un protocole SPE se décompose en plusieurs étapes.

1. Conditionnement

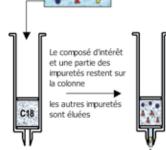

Étape d'activation avec un solvant organique ou un mélange de solvants pour permettre l'élimination des contaminants et favoriser les échanges dans l'adsorbant. Cette étape permet également une meilleure mouillabilité des frittés.

L'hexane, le cyclohexane ou le dichlorométhane sont des solvants régulièrement utilisés en mode "phase normale" pour conditionner la silice vierge ou la silice greffée aminopropyle (R-NH2), dihydroxypropyle (R-R'OH-R"OH), cyanopropyle (R-CN), ...

En mode "phase inverse", pour des silices greffées C18, C8, C2, phényle, cyclohexyle, on emploie couramment le méthanol voire l'acétonitrile.

Technical Tip

- Vérifier la miscibilité des solvants qui seront
- Toujours laisser le niveau du solvant au dessus de l'adsorbant pour maintenir son activation.
- Pour des silices greffées avec un échangeur d'ions, activer avec du méthanol, de l'eau puis avec de l'eau tamponnée au pH souhaité.



2. Introduction de l'échantillon

L'échantillon est déposé sur la partie supérieure du lit de l'adsorbant. Les impuretés n'ayant aucune affinité avec l'adsorbant ne sont pas retenues. D'autres le sont plus ou moins fortement que les composés d'intérêts. Pour apporter un maximum d'efficacité à la purification, la vitesse d'écoulement de l'échantillon doit être contrôlée.

Les valeurs expérimentales des débits observés pour des granulométries d'approximativement 50 µm sont comprises entre :

- 0,7 1 ml / min pour des colonnes de 1 ml
- 2-3 ml / min pour des colonnes de 3 ml
- 5-7 ml / min pour des colonnes de 6 ml
- 7-10 ml / min pour des colonnes de 15 ml
- 10-15 ml / min pour des colonnes de 25 ml
- 0,6 1,1 ml / min pour des plaques 96 puits
- 4-5 ml / min pour des cartouches fermés

La percolation des échantillons visqueux à travers une colonne peut être facilitée en utilisant des adsorbants de 90 à 140 µm. La capacité d'échange et la sélectivité ne sont pas affectées.

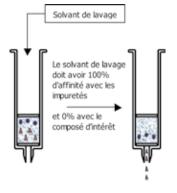
3. Lavage de l'adsorbant

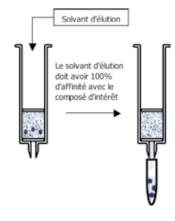
Étape qui permet l'élimination d'impuretés possédant moins d'interactions avec l'adsorbant que le ou les composés d'intérêt. D'autres solutions (solvants ou mélanges de solvants) peuvent être utilisées pour une efficacité plus importante. Elles doivent avoir le plus d'affinité possible avec les impuretés et le moins possible avec les composés d'intérêt pour ne pas les éluer à l'issue de cette étape (Attention à la polarité et au pH des solvants de lavage).

4. Séchage

Faire circuler de l'air pendant 2 à 5 minutes à travers la cartouche pour évaporer les traces de solvant de lavage. Cette étape améliore le rendement d'extraction.

5. Elution


Étape qui consiste à récupérer 100% des composés d'intérêt présents sur l'adsorbant. Le solvant ou mélange de solvants utilisé doit avoir le maximum d'interactions avec les analytes et le moins possible avec les autres interférents qui peuvent rester adsorbés. Le solvant d'élution doit être le plus efficace possible, son volume doit être faible de manière à obtenir un facteur de pré-concentration très important. Un adsorbant à faible diamètre de particules (ex: 30 ou 50 µm) garantira un volume d'élution plus faible qu'un adsorbant de granulométrie plus grande (ex: 90, 140 µm). Par contre la vitesse d'écoulement des fluides sera plus lente avec un risque potentiel de colmatage pour les échantillons sirupeux.


Séchage

Si nécessaire, l'éluat peut être séché avec du sulfate de sodium anhydre pour éliminer les éventuelles traces d'eau.

Technical Tip

- Lors des premiers essais, il est impératif de vérifier que tous les composés d'intérêts de l'échantillon ont été fixés sur l'adsorbant, ce qui implique d'analyser la fraction de percolation.
- En échange d'ions, le pH de l'échantillon doit être identique au pH du tampon utilisé lors de l'étape d'activation de l'adsorbant.

A.64

™interchim

Introduction

7. Concentration

Le but de cette étape est de concentrer les composés d'intérêts dans la fraction d'élution. Elle est généralement réalisée par évaporation d'une partie du solvant. Le concentré obtenu est soit directement utilisable, soit repris dans un solvant d'analyse. Une fois optimisées, ces étapes garantissent une analyse plus sensible (augmentation de la concentration des composés d'intérêts), plus reproductible et résolutive (élimination des impuretés qui peuvent modifier la robustesse de l'analyse).

Définition du "volume lit"

Pour les étapes de conditionnement, de lavage et d'élution, les volumes théoriques sont de 2 à 3 fois le volume de l'adsorbant ou "volume lit" soit :

- Pour 100 mg de silice 60 A 50 μ m : ~120 μ l
- Pour 500 mg de silice 60 A 50 μm : ~ 600 μl
- Pour 100 mg de polymère : \sim 180 μ l

Une masse d'adsorbant trop élevée induit une élution incomplète des composés d'intérêt ou une dilution de l'échantillon par un volume d'élution trop important. Une masse d'adsorbant trop faible induit une rétention incomplète des composés d'intérêt que l'on retrouve dans la fraction de percolation ou dans le solvant de lavage. Ces deux situations conduisent à des taux de récupération plus faibles que prévus.

Choix de l'adsorbant SPE?

Quel que soit l'échantillon à purifier (qu'il soit issu de l'environnement, du domaine pharmaceutique, du domaine cosmétique, de l'agrochimie, etc. ...), il est fondamental de choisir son adsorbant d'extraction sur phase solide de façon précise.

Le choix de cet adsorbant permettra de définir une sélectivité spécifique aux composés d'intérêt ainsi qu'une capacité de charge suffisante à l'entière adsorption de ceux-ci.

On rencontre en général deux grandes familles :

- · Les silices
- Les polymères

Ces deux familles possèdent des caractéristiques très différentes. Leurs applications, avantages et inconvénients sont divers et variés.

Polymères

- Très stables chimiquement, ils résistent le plus souvent à un pH compris entre 1 et 14.
- Faiblement sélectifs comparés aux silices greffées (exceptés les polymères échange d'ions).
- Ils possèdent une capacité de charge bien supérieure aux silices traditionnelles et permettent la purification d'un très grand nombre de molécules ou de familles de molécules quelle que soit la matrice (eaux, huiles, plasma, urines, ...)

Les polymères à très hautes surfaces spécifiques sont particulièrement efficaces pour la préconcentration de composés polaires.

La masse de composés adsorbables peut aller jusqu'à 30% de la masse du polymère contenue dans la colonne. Il est donc possible de réaliser le même travail de purification avec une quantité de polymères 2 à 3 fois moindre que celle d'une silice. Le volume d'élution est beaucoup plus faible, ce qui conduit à une concentration plus importante, une durée de l'évaporation réduite et finalement une préparation d'échantillon plus rapide.

Adsorbant	Masse d'adsorbant	Surface Spécifique	Capacité de charge
Silices	500 mg	500 m ² /g	5 - 50 mg
Polymères	500 mg	800 m ² /g	15 - 100 mg
Polymères	500 mg	1500 m ² /g	15 - 150 mg

Silices

- Stabilité chimique moins importante que les polymères, elles sont stables à un pH compris entre 2 et 7.5
- Beaucoup plus sélectives que les polymères avec une capacité de charge moins importante du fait de leur plus faible surface spécifique (de l'ordre de 3 à 10% de la masse d'adsorbant), les silices restent toujours des adsorbants de référence très utilisés.

On distingue 4 familles de silices identifiables par leur mode de fonctionnement ainsi que par leur sélectivité :

Silices pour mode "Phase inverse"

En mode "Phase Inverse", les greffons hydrophobes fonctionnent selon les interactions de type Van der Walls. La purification permet un isolement de familles de composés apolaires ou faiblement polaires.

L'ajout de tampon est préférable lorsque les composés sont ionisables (acides, bases).

Les phases apolaires non post-silanisées (non end capped) donnent, avec les groupements silanols superficiels, des interactions polaires supplémentaires qui peuvent améliorer la rétention des composés contenant des fonctionnalités polaires.

Pour un même éluant, plus la chaîne carbonnée est courte, plus la rétention d'un composé est faible.

Pour les composés aromatiques, le greffage phényl présente de meilleures interactions. Le méthanol ou l'acétonitrile sont des solvants d'élution régulièrement utilisés.

Silices pour mode "Phase Normale"

Le mode "phase normale" reste un compromis très intéressant pour la purification de molécules ou familles de molécules dont la structure présente un grand nombre de fonctions polaires. Le choix du solvant est très important et influe directement sur le type d'interaction mis en oeuvre pour la purification (un solvant apolaire favorise les interactions polaires entre l'adsorbant et les composés).

- Le greffage cyano (CN) peut être utilisé soit en "phase normale" pour l'extraction de composés polaires soit en "phase inverse" pour les molécules moyennement polaires.
- La silice greffée Diol se présente comme une très bonne alternative à la silice vierge pour l'extraction de composés polaires (liaisons hydrogène).
- Phase mixte, la silice amino (NH₂) peut s'utiliser comme un échangeur d'anions faibles (pour les acides très fort) ou comme un adsorbant polaire qui peut interagir avec les groupements fonctionnels -OH, -NH, -SH-, ...

Introduction

Technical Tip

En "échange d'ions" ou en "mode mixte", la capacité d'échange permet de définir la quantité massique maximum en composés ionisables qui peuvent être appariés sur une masse d'adsorbant pré-définie. Elle s'exprime généralement en milliéquivalent par gramme d'adsorbant (meq/g).

Ex. : Pour 1 g de silice greffée SCX possédant une capacité d'échange de 0,6 meq/g, il est possible de retenir 0,6 mmol soit par exemple 60 μg d'un composé de masse molaire 100 g/mol ne présentant qu' une seule fonction basique.

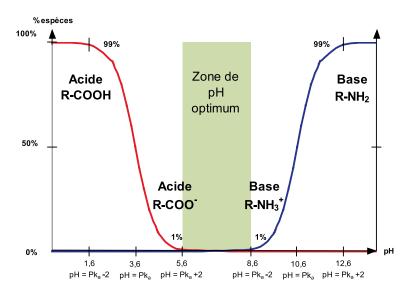
Silices pour mode "Echange d'ions"

En mode "échange d'ions", le mécanisme de rétention est l'interaction ionique. L'extrémité du greffon de l'adsorbant crée une attraction forte avec le ou les composés de l'échantillon possédant une ou des fonctions ionisables antagonistes. L'interaction des phases échangeuses d'ions dépend essentiellement du pH et de la force ionique du contre-ions. La force de la liaison sera d'autant plus importante que l'acide et la base qui s'apparient sont forts, ce qui peut être problématique pour l'étape d'élution et pour l'obtention d'un bon taux de recouvrement. C'est pourquoi il existe différents greffons échange d'ions :

- Les phases échangeuses d'anions (SAX) sont généralement une amine quaternaire très forte. Elles sont utilisées pour extraire les acides faibles portant une ou des charge(s) négative(s).
- Les phases échangeuses de cations (SCX) ayant une fonctionnalité sulfonique sont utilisées pour extraire tous les composés basiques faibles portant une ou des charge(s) positive(s).
- Les phases échangeuses d'anions, (DEAE, DEA, NH₂,...) sur une base d'amine moins forte que le SAX, sont utilisées pour extraire les acides forts portant une ou des charge(s) négative(s).
- Les phases échangeuses de cations (WCX) sont fonctionnalisées par un acide carboxylique et sont utilisées pour extraire tous les composés basiques forts portant une ou des charge(s) positive(s).

Silices pour mode "Mixed Mode"

Une des techniques les plus sélectives des adsorbants silices greffées est celle du "mode mixte" ou "mixed mode". Le double greffage (échange d'ions et chaînes carbonées hydrophobes) apporte de nouvelles sélectivités. Les composés d'intérêt, qui doivent impérativement posséder une fonction acide ou basique, sont retenus sur le greffage échange d'ions. Un premier lavage puissant faisant intervenir le pH permet d'éliminer les impuretés ionisables. Il est ensuite possible d'éliminer les autres impuretés retenues sur le greffage hydrophobe par un solvant organique. Cette technique est très utilisée pour l'extraction de composés basiques (médicaments, drogues et métabolites) dans les fluides biologiques (sang, plasma, urines, ...).


Comme en "échange d'ions", il existe différents greffons spécifiques aux composés d'intérêt :

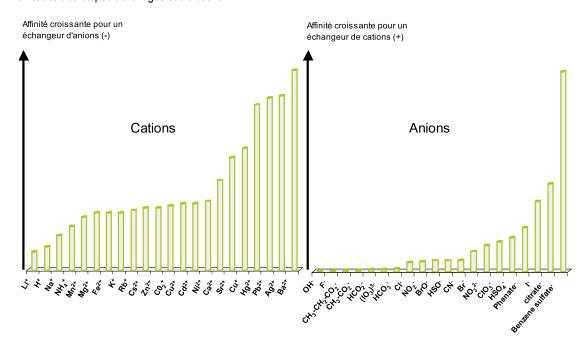
- Les phases "mixed mode" (RP/SCX) sont constituées d'un acide fort (sulfonique) et d'un greffon hydrophobe. Elles sont utilisées pour extraire les bases faibles portant une ou des charge(s) négative(s).
- Les phases "mixed mode" (RP/SAX) sont sur une base d'amine quaternaire et de greffons hydrophobes. Elles sont utilisées pour extraire les acides faibles portant une ou des charge(s) négative(s).
- Les phases "mixed mode" (RP/WCX) sont constituées d'un acide faible (carboxylique) et de greffons hydrophobes. Elles sont utilisées pour extraire les bases fortes portant une ou des charge(s) négative(s).
- Les phases "mixed mode" (RP/NH₂) sont sur une base d'amine faible et de greffons hydrophobes. Elles sont utilisées pour extraire les acides forts portant une ou des charge(s) négative(s).

Introduction

Répartition en fonction du pH de la proportion acide/base conjuguée d'un composé ionisable acide (rouge) et basique (bleu) en solution

Technical Tix

Les méthodes d'extractions SPE basées sur les modes "Échange d'Ions" et "Mixed Modes" sont relativement complexes à mettre en oeuvre.


Au niveau de l'échantillon, les acides et les bases en solution doivent se présenter sous leurs formes ionisées pour développer des interactions avec l'adsorbant.

Pour rendre reproductibles et répétables les taux de récupération, il est indispensable de tamponner l'échantillon et l'adsorbant au pH optimum.

Ex: Pour la zone de pH comprise entre 5,6 et 8,6 dans l'exemple ci-joint, la totalité des composés acides (pKa 3,6) et basiques (pKa 10,6) s'apparient en formant une liaison ionique forte.

Sélectivité relative des contre ions

Un contre-ion est une espèce chimique ionique capable de s'apparier sur un échangeur d'ions. En fonction de sa concentration en solution et de son affinité avec l'échangeur, il améliore l'efficacité des étapes de lavages et d'élutions.

Introduction

Contenants

Contenants	Photo	Nature	Volumes disponibles	Frittés disponibles
Colonnes standards		Polypropylène grade médical	(1 - 3 - 6 - 15 - 25 - 75 - 150) ml	20 μm Polyéthylène ou Teflon
Colonnes LRC		Polypropylène grade médical	Robotic Large Capacité (LRC) 15 mL	20 μm Polyéthylène ou Teflon
Colonnes Glass		Verre	6 ml	20 μm Teflon
Cartouches		Polypropylène grade médical	Type 300 - 600 - 900 mg	20 μm Polyéthylène
Plaques 96 puits		Polypropylène grade médical	2 ml avec des puits carrés	20 μm Polyéthylène
Plaques 48 puits	AM	Polypropylène grade médical	5 ml avec des puits carrés	20 μm Polyéthylène

Technologie Interchim : Accurate Bed Technology™

Le procédé de fabrication Interchim Accurate Bed Technology™ à été développée pour garantir une reproductibilité unique de lot à lot et de colonne à colonne.

Nos adsorbants SPE possèdent une distribution granulométrique optimisée, contrôlée de manière drastique.

Les quantités d'adsorbants sont introduites par pesée avec une précision de +/-1%.

Un certificat de pesée est délivré avec chacune de nos plaques 96 puits attestant de la masse réelle introduite dans chaque puits.

Il en résulte l'optimisation de la technique d'analyse et de l'interprétation des résultats.

Nos colonnes et plaques d'extraction SPE sont livrées dans un emballage PEHD/Al dédié au stockage longue durée.

Notre grande flexibilité et notre expérience dans le domaine du service nous permettent de satisfaire toute demande de fabrication à façon sans surcoût majeur.

Cette démarche permet d'apporter des solutions techniques nouvelles aux problématiques de nos clients et ainsi de leur faciliter le développement et l'optimisation de leur préparation d'échantillon.

Extraction sur phase solide

Minterchim

Guide de sélection des adsorbants

Guide de sélection

Туре	Code Phase	Greffage	Commentaire	"Capacité d'échange"	End- capping	"Porosité Å"	"Surface m²/g"	μm	Grade	Pureté
Silices Upti-Clean S	Séries-S									
Phase Inverse	C18-S	C18	% C : 18	-	oui	60	500	50	sphérique	pure
Phase Inverse	C18U-S	C18	% C : 16	-	non	60	500	50	sphérique	pure
Phase Inverse	RPAQ	C18	100% hydrophile	-	non	120	300	75	sphérique	pure
Phase Inverse	C8-S	C8	% C : 11	-	oui	60	500	50	sphérique	pure
Phase Inverse	C2	C2	% C : 6	-	oui	60	450	60	spheroïdal	pure
Phase Inverse	PH-S	Phenyl	% C:9	-	non	60	500	50	sphérique	pure
Phase Inverse	CH	CycloHexyl	% C : 10	-	non	60	450	60	spheroïdal	pure
Phase normale	SI-S	-	-	-	non	60	500	50	sphérique	pure
Phase normale	NH2-S	Amino	% C : 5	-	non	60	500	50	sphérique	pure
Phase normale	CN-S	Cyano	% C:8	-	oui	60	500	50	sphérique	pure
Phase normale	OH		% C:7	-	non	60	450	60	spheroïdal	pure
Phase échange d'ions	SCX	SCX	Echangeur de cations fort	0,7 meq/g	non	60	450	60	spheroïdal	pure
Phase échange d'ions	WCX	WCX	Echangeur de cations faible	0,2 meq/g	non	60	450	60	spheroïdal	pure
Phase échange d'ions	DEAE	DEAE	Echangeur d'anions	0,33 meq/g	non	60	450	60	spheroïdal	pure
Phase échange d'ions	SAX	SAX	Echangeur d'anions fort	0,30 meq/g	non	60	450	60	spheroïdal	pure
Phase mode mixte	MM1	-	mixed mode RP/SCX	0,09 meq/g	non	60	450	50	spheroïdal	pure
Phase mode mixte	MM2	-	mixed mode RP/WCX	0,10 meq/g	non	60	450	60	spheroïdal	pure
Phase mode mixte	MM3	-	mixed mode RP/SAX	0,14 meq/g	non	60	450	60	spheroïdal	pure
Silices Upti-Clean S	Séries-S2F									
Phase Inverse	C18-S2F	C18	high flow	-	oui	60	500	140	sphérique	pure
Phase Inverse	C18U-S2F	C18	high flow	-	non	60	500	140	sphérique	pure
Silices Recovery										
Phase Inverse	REC18	C18	% C : 15	-	oui	n.c.	n.c.	50	sphérique	pure
Phase normale	RESI	-	-	-	non	n.c.	n.c.	50	sphérique	pure
Upti-Clean Séries S	péciales									
Série Spéciale	FL	-	Florisil Grade Classique	-	non	n.c.	n.c.	200	irregulier	std
Série Spéciale	FLPR	-	Florisil Grade Pesticide Residue	-	non	n.c.	n.c.	200	irregulier	std
Série Spéciale	ALA	-	Alumine Acide	-	non	n.c.	200	32-63	irregulier	std
Série Spéciale	ALB	-	Alumine Basique	-	non	n.c.	200	32-63	irregulier	std
Série Spéciale	ALN	-	Alumine Neutre	-	non	n.c.	200	32-63	irregulier	std
Série Spéciale	XAD2	-	Polystyrène	-	non	90	330	n.c.	sphérique	std
Série Spéciale	P6	-	Polyamide	-	non	n.c.	n.c.	100	spheroïdal	std
Upti-Clean Wide Pore	WC4	C4	-	-	oui	wide pore	100	50	sphérique	pure
Upti-Clean Wide Pore	WC8	C8	-	_	oui	wide pore	100	50	sphérique	pure
Upti-Clean Wide Pore	WSC	SCX	Echangeur de cations fort	-	n.c.	wide pore	100	50	sphérique	pure

Guide de sélection des adsorbants

Guide de sélection

Tuno	Code	Groffons	Commentaire	"Consoité	End-	"Porosité	"Surface	1100	Grada	Duroté
Туре	Phase	Greffage	Commentaire	"Capacité d'échange"	eng- capping	Å"	m ² /q"	μm	Grade	Pureté
Polymères PolyCle				a containge	oupping	^	III 79			
Phase Inverse	2H	_	hydrophile / hydophobe	_	non	n.c.	850	60	sphérique	pure
Phase Inverse	302H	_	hydrophile / hydophobe	_	non	n.c.	850	30	sphérique	pure
Phase échange d'ions	HCX	SCX	Echangeur de cations fort	1,0 meg/g	non	n.c.	850	60	sphérique	pure
Phase échange d'ions	30HCX	SCX	Echangeur de cations fort	1,0 meg/g	non	n.c.	850	30	sphérique	pure
Phase échange d'ions	HCW	WCX	Echangeur de cations faible	0.8 meg/g	non	n.c.	850	60	sphérique	pure
Phase échange d'ions	30HCW	WCX	Echangeur de cations faible	0,8 meg/g	non	n.c.	850	30	sphérique	pure
Phase échange d'ions	HAX	SAX	Echangeur d'anions fort	0,3 meg/g	non	n.c.	850	60	sphérique	pure
Phase échange d'ions	30HAX	SAX	Echangeur d'anions fort	0,3 meg/g	non	n.c.	850	30	sphérique	pure
Phase échange d'ions	HAW	WAX	Echangeur d'anions faible	0,7 meg/g	non	n.c.	850	60	sphérique	pure
Phase échange d'ions	30HAW	WAX	Echangeur d'anions faible	0,7 meg/g	non	n.c.	850	30	sphérique	pure
				-, 4.3					94.13.143.	F • • • • • • • • • • • • • • • • • • •
Polymères Atoll										
Phase Inverse	Χ	-	hydrophobe	-	non	n.c.	800	40	sphérique	pure
Phase Inverse	30XC	-	haute capacité	-	non	n.c.	1500	30	sphérique	pure
Phase Inverse	XC	-	haute capacité	-	non	n.c.	1500	70	sphérique	pure
Phase Inverse	XWP	-	haute capacité	-	non	wide pore	1200	90	sphérique	pure
Polymères BioP										
Phase Inverse	Р	-	hydrophile / hydophobe	-	non	wide pore	400	60	sphérique	pure
Phase Inverse	30P	-	hydrophile / hydophobe	-	non	wide pore	400	30	sphérique	pure
Phase échange d'ions	CX	SCX	Echangeur de cations fort	2,0 meq/g	non	wide pore	400	60	sphérique	pure
Phase échange d'ions	30CX	SCX	Echangeur de cations fort	2,0 meq/g	non	wide pore	400	30	sphérique	pure
Phase échange d'ions	CW	WCX	Echangeur de cations faible	2,0 meq/g	non	wide pore	400	60	sphérique	pure
Phase échange d'ions	30CW	WCX	Echangeur de cations faible	2,0 meq/g	non	wide pore	400	30	sphérique	pure
Phase échange d'ions	AX	SAX	Echangeur d'anions fort	2,0 meq/g	non	wide pore	400	60	sphérique	pure
Phase échange d'ions	30AX	SAX	Echangeur d'anions fort	2,0 meq/g	non	wide pore	400	30	sphérique	pure
		_	-							

Atoll ATH

Séverine Compain, Dimitri Schlemmer, Mikael Levi and all, CEA, Service de Pharmacologie et d'Immunologie, DSV/DRM, CEA/Saclay, 91191 Gif-sur-Yvette Cedex and SPIBIO, Parc d'Activite' du Pas du Lac, 10 bis avenue Ampère, F-78180 Montigny le Bretonneux, France; JOURNAL OF MASS SPECTROMETRY, J. Mass Spectrom. 2005; 40: 9–18; Development and validation of a liquid chromatographic/tandem mass spectrometric assay for the quantitation of nucleoside HIV reverse transcriptase inhibitors in biological matrices.

Atoll XC

R.Déporte and all, Department of Pharmacokinetic & Department of Biostatistic, Anticancer Centre René Gauducheau 44805 Nantes, France; Journal of Chromatography B, 834 (2006) 170–177; High-performance liquid chromatographic assay with UV detection for measurement of dihydrouracil / uracil ratio in plasma.

Atoll XWP

A.Salvador and all, Université Claude Bernard UMR 5180 69622 Villeurbanne & CEPHAC Europe 86281Saint-Benoit, France; Chromatographia 2006, 63, 609-615; Simultaneous LC-MS-MS Analysis of Capecitabine and its Metabolites (5¢-deoxy-5-fluorocytidine, 5¢-deoxy-5-fluorocytidine, 5-fluorocytidine, 5ther Off-Line SPE from Human Plasma.

Atoll XC

E. Bichon,C.A. Richard, B. Le Bizec, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), USC INRA 2013, Ecole Nationale Vétérinaire de Nantes (ENVN), BP 50707, 44307 Nantes Cedex 3, France; Journal of Chromatography A, 1201 (2008) 91–99; Development and validation of a method for fipronil residue determination in ovine plasma using 96-well plate solid-phase extraction and gas chromatography—tandem mass spectrometry.

AtolIXC

Johan Rosen, and all, National Food Administration, Box 622, SE 751 26 Uppsala; Sweden, Journal of Chromatography A, 1172 (2007) 19–24; Retention studies of acrylamide for the design of a robust liquid chromatography–tandem mass spectrometry method for food analysis.

Atoll XC et Upti-Clean Florisil

J. Le Faouder, E. Bichon and all, LABERCA, Ecole Nationale Vétérinaire de Nantes, Route de Gachet, Atlanpôle La Chantrerie, BP 50707, 44087 Nantes Cedex 03, France; Science Direct, Talanta 73 (2007) 710-717, Transfer assessment of fipronil residues from feed to cow milk.

Upti-Clean C18U

Serge Krivobok and all, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés and Laboratoire de Chimie des Protéines, Département de Réponse et Dynamique Cellulaires, CNRS UMR 5092, CEA-Grenoble, 38054 Grenoble Cedex 9, France; JOURNAL OF BACTERIOLOGY, July 2003, p. 3828–3841; Identification of Pyrene-Induced Proteins in Mycobacterium sp. Strain 6PY1: Evidence for Two Ring-Hydroxylating Dioxygenases.

Upti-Clean C18U

Sandrine Demanèche and all, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, Unité Mixte de Recherche CEA-CNRS-Université Joseph Fourier-UMR5092, Laboratoire de Chimie des Protéines, Département de Réponse et Dynamique Cellulaires, CEA-Grenoble, Grenoble, France; Applied and Environmental Microbiology, 2004 November, p. 6714–6725; Identification and Functional Analysis of Two Aromatic-Ring-Hydroxylating Dioxygenases from a Sphingomonas Strain That Degrades Various Polycyclic Aromatic Hydrocarbons.

Upti-Clean bilayer SI/CN

Roberto Alzaga and all, Environmental Chemistry Department, IIQAB-CSIC, Jordi Girona 18–26, E-08034 Barcelona, Spain; Journal of Chromatography A, 1025 (2004) 133–138; Fast solid-phase extraction–gas chromatography–mass spectrometry procedure for oil fingerprinting Application to the Prestige oil spill.

Upti-Clean S

F. Boudsocq, P. Benaim, Y. Canitrot, M. Knibiehler, F. Ausseil, J. P. Capp, A. Bieth, C. Long, B. David, I. Shevelev, E. Frierich-Heinecken, U. Hubscher, F. Amalric, G. Massiot, J. S. Hoffmann, and C. Cazaux, Equipe Instabilité' Génétique et Cancer, Institut de Pharmacologie et de Biologie Structurale, Unité' Mixte Recherche Centre National de la Recherche Scientifique 5089 (F.B., P.B., Y.C., J.P.C., A.B., J.S.H., C.C.), Centre de Recherche en Pharmacologie-Santé', Unité' Mixte Recherche Centre National de la Recherche Scientifique/P. Fabre 2587 (M.K.), Centre de Criblage Pharmacologique, Unité' Mixte Recherche Centre National de la Recherche Scientifique/P. Fabre 2597 (C.L., B.D., G.M.), Institut de Sciences et Technologies du Médicament de Toulouse 3, Toulouse, France; and Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich, Switzerland (E.F.-H., U.H.); MOLECULAR PHARMACOLOGY Mol Pharmacol 67:1485–1492, 2005, Modulation of Cellular Response to Cisplatin by a Novel Inhibitor of DNA Polymerase B.

Upti-Clean CN

Chadi Abbara and all, Laboratoire de Pharmacologie, Service de Pharmacie & Service d'addictologie Hôpital Paul BROUSSE 94800 Villejuif, France; Journal of Pharmaceutical and

Biomedical Analysis 41 (2006) 1011–1016; Development and validation of a method for the quantitation of 9tetrahydrocannabinol in human plasma by high performance liquid chromatography after solid-phase extraction.

Publications sur les produits SPE Interchim

Upti-CleanC18

Gaud Pinel, Lauriane Rambaud and all, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments, Ecole Nationale Vétérinaire de Nantes, Route de Gachet, BP 50707, 44307 Nantes cedex 3, France; Journal of Steroid Biochemistry & Molecular Biology xxx (2008) xxx–xxx; Elimination kinetic of 17 -estradiol 3-benzoate and 17 -nandrolone laureate ester metabolites in calves' urine.

Tubes & frits 1ml

S. Vo Duy^{a,b}, I. Lefebvre-Tournier^a, V. Pichon^b, F. Hugon-Chapuis^b, J.-Y. Puy^a, C. Périgaud^a, ^a Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-UM1-UM2, Université Montpellier 2, Case Courrier 1705, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France, ^b Laboratoire Environnement et Chimie Analytique (UMR CNRS 7121), ESPCI Paris-Tech, 10 rue Vauquelin, 75231 Paris Cedex 05, France; Journal of Chromatography B, 877 (2009) 1101–1108; Molecularly imprinted polymer for analysis of zidovudine and stavudine in human serum by liquid chromatography—mass spectrometry.

Upti-clean C18

Diane Defer a.b., Nathalie Bourgougnon a.b., Yannick Fleury a.c., a Université Européenne de Bretagne, France, b Université de Bretagne Sud, Centre d'Enseignement et de Recherche Yves Coppens, Laboratoire de Biotechnologie et Chimie Marines EA3884, Campus de Tohannic BP573, 56017 Vannes Cedex, France, c Université de Brest, Institut Universitaire de Technologie, Laboratoire universitaire de Biodiversité et d'Ecologie Microbienne EA3882 IFR148 SclnBioS, 6 rue de l'université, 29334 Quimper Cedex, France ; Aquaculture 293 (2009) 1–7; Screening for antibacterial and antiviral activities in three bivalve and two gastropod marine molluscs.

Upti-clean SI - UptiBond UB5-P

Jean-Philippe Antignac ^a, Ronan Cariou ^a, Daniel Zalko ^b, Alain Berrebi ^c, Jean-Pierre Cravedi ^b, Daniel Maume^a, Philippe Marchand ^a, Fabrice Monteau ^a, Anne Riu ^d, François Andre ^a, Bruno Le Bizec ^a, ^a Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), USC INRA 2013, Ecole Nationale Vétérinaire de Nantes (ENVN), Route de Gachet, BP 50707, 44307 Nantes Cedex 3, France, ^aUMR 1089 Xénobiotiques, INRA, 31931 Toulouse, France, ^c Centre Hospitalier Universitaire de Toulouse, Hôpital Paule de Viguier, Service de gynécologie-obstétrique, Toulouse, France, ^d Unité Signalisation Hormonale, Environnement et Cancer, U824 INSERM, 34298 Montpellier Cedex 5, France; Environmental Pollution 157 (2009) 164–173; Exposure assessment of French women and their newborn to brominated flame retardants: Determination of tri- to deca- polybromodiphenylethers (PBDE) in maternal adipose tissue, serum, breast milk and cord serum.

Upti-Clean WC4 - Uptisphere 3HDO

Marie-Hélène Le Breton^{a,b}, Sandrine Rochereau-Roulet^a, Gaud Pinel^a, Nora Cesbron^c, Bruno Le Bizec^a, ^a Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Ecole Nationale Vétérinaire de Nantes (ENVN), BP 50707, 44307 Nantes, France, ^b Nestlé Research Center, QS Department, Nestec Ltd., P.O. Box 44, CH-1000 Lausanne 26, Switzerland, ^c Unité Maladie des Animaux d'Elevage (MAE), Ecole Nationale Vétérinaire de Nantes (ENVN), BP 50707, 44307 Nantes, France; Analytica chimica acta 637 (2 0 0 9) 121–127; Elimination kinetic of recombinant somatotropin in bovine.

Upti-Clean WC4 - Uptisphere 5WC4

Ludovic Bailly-Chouriberry^{a,b}, Gaud Pinel^b, Patrice Garcia^a, Marie-Agnès Popot^a, Bruno Le Bizac^b, Yves Bonnaire ^a, ^a Laboratoire des Courses Hippiques (LCH), 15 Rue de Paradis, 91370 Verrières le Buisson, France, ^b Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Ecole Nationale Vétérinaire de Nantes (ENVN), Route de Gachet BP 50707, 44307 Nantes, France; Anal. Chem. 2008, 80, 8340–8347; Identification of Recombinant Equine Growth Hormone in Horse Plasma by LC-MS/MS: A Confirmatory Analysis in Doping Control.

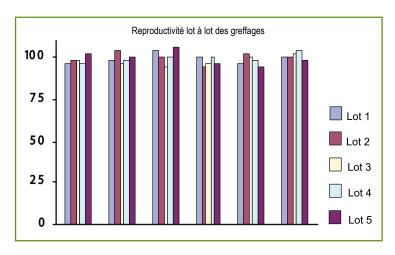
Uptisphere 3ODB - Upti-Clean SI/CN

E. Bichon, and all, LABERCA-Laboratoire d'Etude des Résidus et Contaminants dans les Aliments, Ecole Nationale Vétérinaire de Nantes, route de Gachet, BP 50707, 44307 Nantes cedex 3, France; Journal of Chromatography B, 838 (2006) 96–106; LC–ESI-MS/MS determination of phenylurea and triazine herbicides and their dealkylated degradation products in oysters.

Upti-Clean WC4

Marie-Hélène Le Breton 12°, Sandrine Rochereau-Roulet¹, Gaud Pinel¹, Ludovic Bailly-Chouriberry¹, Guido Rychen³, Stefan Jurjanz³, Till Goldmann² and Bruno Le Bizec¹, ¹Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Ecole Nationale Vétérinaire de Nantes (ENVN), BP 50707,44307 Nantes, France, ²Nestlé Research Center, Nestec Ltd P.O. Box 44, CH-1000 Lausanne 26, Switzerland, ³Unité de Recherche Animale et Fonctionnalités des Produits Animaux, ENSAIA, 2 Avenue de la forêt de Haye, 54505 Vandoeuvre-les-Nancy,France, Rapid Commun. Mass Spectrom. 2008; 22 : 3130–3136; Direct determination of recombinant bovine somatotropin in plasma from a treated goat by liquid chromatography/high-resolution mass spectrometry

A.71


Introduction

Elaborées à partir de la silice Upti-Prep, les colonnes de très haute qualité Upti-Clean® s'inscrivent comme consommables SPE de référence dans les plupart des laboratoires. Elles répondent parfaitement aux besoins des utilisateurs qui travaillent dans le pharmaceutique, l'environnement, l'agrochimie, l'hygiène alimentaire, le cosmétique, mais aussi dans tous les hôpitaux et services de recherche.

Les particules de silice sont pures à 99,9%, la porosité ainsi que la granulométrie sont strictement contrôlées (+/- 10 Å, +/- $5 \mu m$).

Le pH d'utilisation de cette silice est compris entre 2 et 9.

La parfaite maîtrise des greffages chimiques assure reproductibilité et répétabilité des rendements d'extraction avec des taux de recouvrements supérieurs aux silices irrégulières traditionnelles.

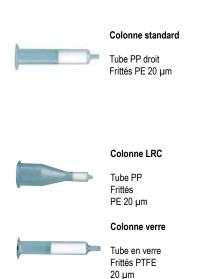
La technologie de fabrication **"Accurate Bed Technology™"** permet une précision des pesées automatiques à +/- 1% près.

Chaque produit fini est délivré avec son certificat individuel mentionnant le numéro de fabrication et les numéros de lots de phase utilisés. La traçabilité de la production est garantie.

Le conditionnement des produits est spécialement étudié pour un stockage de longue durée à l'abri de l'air et de la lumière.

Les formats de colonnes Upti-Clean sont adaptables sur tous les appareils d'extraction et sur tous les automates du marché.

Upti-Clean® Séries-S


Offrant plus de 20 chimies de greffages différentes, les colonnes Upti-Clean® Série-S permettent de recouvrir un panel d'applications SPE quasi universel.

Les formats des colonnes en polypropylène grade médical sont compatibles avec la plupart des solvants d'extraction. Les frittés polyéthylène ultra-pur offrent une très bonne mouillabilité. Les écoulements des solvants et échantillons sont parfaitement reproductibles évitant ainsi la variabilité des rendements d'extraction.

Résistantes aux solvants agressifs, les colonnes en verre munies de frittés PTFE garantissent des purifications sans aucun extractible.

Colonnes Phase inverse

Masse	Vol.	Qté	C18-S	C18U-S	RPAQ
Colonne	s standar	ds - Frit	tés PE		
50 mg	1 ml	50 u	C18-S-50/1	C18U-S-50/1	RPAQ-50/1
100 mg	1 ml	100 u	C18-S-100/1	C18U-S-100/1	RPAQ-100/1
100 mg	3 ml	50 u	C18-S-100/3	C18U-S-100/3	RPAQ-100/3
200 mg	3 ml	50 u	C18-S-200/3	C18U-S-200/3	RPAQ-200/3
500 mg	3 ml	50 u	C18-S-500/3	C18U-S-500/3	RPAQ-500/3
500 mg	6 ml	30 u	C18-S-500/6	C18U-S-500/6	RPAQ-500/6
1000 mg	6 ml	30 u	C18-S-1G/6	C18U-S-1G/6	RPAQ-1G/6
2000 mg	6 ml	20 u	C18-S-2G/6	C18U-S-2G/6	RPAQ-2G/6
2000 mg	15 ml	20 u	C18-S-2G/15	C18U-S-2G/15	RPAQ-2G/15
2000 mg	25 ml	20 u	C18-S-2G/25	C18U-S-2G/25	RPAQ-2G/25
Colonne	s LRC - Fi	rittés PE			
100 mg	LRC 15	50 u	C18-S-100LRC	C18U-S-100LRC	RPAQ-100LRC
200 mg	LRC 15	50 u	C18-S-200LRC	C18U-S-200LRC	RPAQ-200LRC
500 mg	LRC 15	50 u	C18-S-500LRC	C18U-S-500LRC	RPAQ-500LRC
Colonne	s verre - F	rittés P	TFE		
200 mg	6 ml	30 u	C18-S-200/6G	C18U-S-200/6G	RPAQ-200/6G
500 mg	6 ml	30 u	C18-S-500/6G	C18U-S-500/6G	RPAQ-500/6G
1000 mg	6 ml	30 u	C18-S-1G/6G	C18U-S-1G/6G	RPAQ-1G/6G

Comment choisir votre phase stationnaire? Référez vous aux pages A.62 à A.70 ou contactez notre service technique.

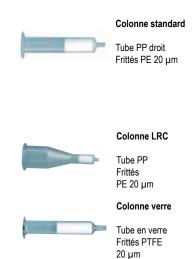
Upti-Clean® Séries-S

Masse	Vol.	Qté	C8-S	C2	PH-S	СН
Colonne	s standar	ds - Frit	tés PE			
50 mg	1 ml	50 u	C8-S-50/1	C2-50/1	PH-S-50/1	CH-50/1
100 mg	1 ml	100 u	C8-S-100/1	C2-100/1	PH-S-100/1	CH-100/1
100 mg	3 ml	50 u	C8-S-100/3	C2-100/3	PH-S-100/3	CH-100/3
200 mg	3 ml	50 u	C8-S-200/3	C2-200/3	PH-S-200/3	CH-200/3
500 mg	3 ml	50 u	C8-S-500/3	C2-500/3	PH-S-500/3	CH-500/3
500 mg	6 ml	30 u	C8-S-500/6	C2-500/6	PH-S-500/6	CH-500/6
1000 mg	6 ml	30 u	C8-S-1G/6	C2-1G/6	PH-S-1G/6	CH-1G/6
2000 mg	6 ml	20 u	C8-S-2G/6	C2-2G/6	PH-S-2G/6	CH-2G/6
2000 mg	15 ml	20 u	C8-S-2G/15	C2-2G/15	PH-S-2G/15	CH-2G/15
2000 mg	25 ml	20 u	C8-S-2G/25	C2-2G/25	PH-S-2G/25	CH-2G/25
Colonnes	s LRC - F	rittés Pl	.			
100 mg	LRC 15	50 u	C8-S-100LRC	C2-100LRC	PH-S-100LRC	CH-100LRC
200 mg	LRC15	50 u	C8-S-200LRC	C2-200LRC	PH-S-200LRC	CH-200LRC
500 mg	LRC 15	50 u	C8-S-500LRC	C2-500LRC	PH-S-500LRC	CH-500LRC
Colonne	s verre - l	Frittés P	TFE			
200 mg	6 ml	30 u	C8-S-200/6G	C2-200/6G	PH-S-200/6G	CH-200/6G
500 mg	6 ml	30 u	C8-S-500/6G	C2-500/6G	PH-S-500/6G	CH-500/6G
1000 mg	6 ml	30 u	C8-S-1G/6G	C2-1G/6G	PH-S-1G/6G	CH-1G/6G

Colonnes Phase Normale

Masse	Vol.	Qté	SI-S	NH2-S	CN-S	ОН
Colonnes	standar	ds - Fritt	tés PE			
50 mg	1 ml	50 u	SI-S-50/1	NH2-S-50/1	CN-S-50/1	OH-50/1
100 mg	1 ml	100 u	SI-S-100/1	NH2-S-100/1	CN-S-100/1	OH-100/1
100 mg	3 ml	50 u	SI-S-100/3	NH2-S-100/3	CN-S-100/3	OH-100/3
200 mg	3 ml	50 u	SI-S-200/3	NH2-S-200/3	CN-S-200/3	OH-200/3
500 mg	3 ml	50 u	SI-S-500/3	NH2-S-500/3	CN-S-500/3	OH-500/3
500 mg	6 ml	30 u	SI-S-500/6	NH2-S-500/6	CN-S-500/6	OH-500/6
1000 mg	6 ml	30 u	SI-S-1G/6	NH2-S-1G/6	CN-S-1G/6	OH-1G/6
2000 mg	6 ml	20 u	SI-S-2G/6	NH2-S-2G/6	CN-S-2G/6	OH-2G/6
2000 mg	15 ml	20 u	SI-S-2G/15	NH2-S-2G/15	CN-S-2G/15	OH-2G/15
2000 mg	25 ml	20 u	SI-S-2G/25	NH2-S-2G/25	CN-S-2G/25	OH-2G/25
Colonnes	I RC - Fr	ittés PF	:			
100 mg	LRC 15	50 u	SI-S-100LRC	NH2-S-100LRC	CN-S-100LRC	OH-100LRC
200 mg	LRC 15	50 u	SI-S-200LRC	NH2-S-200LRC	CN-S-200LRC	OH-200LRC
500 mg	LRC 15	50 u	SI-S-500LRC	NH2-S-500LRC	CN-S-500LRC	OH-500LRC
Colonnes	verre - F	rittés P	TFE			
200 mg	6 ml	30 u	SI-S-200/6G	NH2-S-200/6G	CN-S-200/6G	OH-200/6G
500 mg	6 ml	30 u	SI-S-500/6G	NH2-S-500/6G	CN-S-500/6G	OH-500/6G
1000 mg	6 ml	30 u	SI-S-1G/6G	NH2-S-1G/6G	CN-S-1G/6G	OH-1G/6G

A.75


Upti-Clean® Séries-S

Colonnes Echange d'ions

Masse	Vol.	Qté	SCX	WCX	DEAE	SAX
Colonne	s standar	ds - Frit	tés PE			
50 mg	1 ml	50 u	SCX-50/1	WCX-50/1	DEAE-50/1	SAX-50/1
100 mg	1 ml	100 u	SCX-100/1	WCX-100/1	DEAE-100/1	SAX-100/1
100 mg	3 ml	50 u	SCX-100/3	WCX-100/3	DEAE-100/3	SAX-100/3
200 mg	3 ml	50 u	SCX-200/3	WCX-200/3	DEAE-200/3	SAX-200/3
500 mg	3 ml	50 u	SCX-500/3	WCX-500/3	DEAE-500/3	SAX-500/3
500 mg	6 ml	30 u	SCX-500/6	WCX-500/6	DEAE-500/6	SAX-500/6
1000 mg	6 ml	30 u	SCX-1G/6	WCX-1G/6	DEAE-1G/6	SAX-1G/6
2000 mg	6 ml	20 u	SCX-2G/6	WCX-2G/6	DEAE-2G/6	SAX-2G/6
2000 mg	15 ml	20 u	SCX-2G/15	WCX-2G/15	DEAE-2G/15	SAX-2G/15
2000 mg	25 ml	20 u	SCX-2G/25	WCX-2G/25	DEAE-2G/25	SAX-2G/25
Colonne	s LRC - F	rittás DF	=			
100 mg	LRC 15	50 u	SCX-100LRC	WCX-100LRC	DEAE-100LRC	SAX-100LRC
•						0.01.00=.10
200 mg	LRC 15	50 u	SCX-200LRC	WCX-200LRC	DEAE-200LRC	SAX-200LRC
500 mg	LRC 15	50 u	SCX-500LRC	WCX-500LRC	DEAE-500LRC	SAX-500LRC
Colonne	s verre - F	rittés P	TFE			
200 mg	6 ml	30 u	SCX-200/6G	WCX-200/6G	DEAE-200/6G	SAX-200/6G
500 mg	6 ml	30 u	SCX-500/6G	WCX-500/6G	DEAE-500/6G	SAX-500/6G
1000 mg	6 ml	30 u	SCX-1G/6G	WCX-1G/6G	DEAE-1G/6G	SAX-1G/6G

Colonnes Mixed Mode

Masse	Vol.	Qté	MM1	MM2	MM3				
Colonne	s standar	ds - Frit	tés PE						
50 mg	1 ml	50 u	MM1-50/1	MM2-50/1	MM3-50/1				
100 mg	1 ml	100 u	MM1-100/1	MM2-100/1	MM3-100/1				
100 mg	3 ml	50 u	MM1-100/3	MM2-100/3	MM3-100/3				
200 mg	3 ml	50 u	MM1-200/3	MM2-200/3	MM3-200/3				
500 mg	3 ml	50 u	MM1-500/3	MM2-500/3	MM3-500/3				
500 mg	6 ml	30 u	MM1-500/6	MM2-500/6	MM3-500/6				
1000 mg	6 ml	30 u	MM1-1G/6	MM2-1G/6	MM3-1G/6				
2000 mg	6 ml	20 u	MM1-2G/6	MM2-2G/6	MM3-2G/6				
2000 mg	15 ml	20 u	MM1-2G/15	MM2-2G/15	MM3-2G/15				
2000 mg	25 ml	20 u	MM1-2G/25	MM2-2G/25	MM3-2G/25				
Colonno	Colonnes LRC - Frittés PE								
			=						
100 mg	LRC 15	50 u	MM1-100LRC	MM2-100LRC	MM3-100LRC				
200 mg	LRC 15	50 u	MM1-200LRC	MM2-200LRC	MM3-200LRC				
500 mg	LRC 15	50 u	MM1-500LRC	MM2-500LRC	MM3-500LRC				
Colonne	s verre - F	rittés P	TFE						
200 mg	6 ml	30 u	MM1-200/6G	MM2-200/6G	MM3-200/6G				
500 mg	6 ml	30 u	MM1-500/6G	MM2-500/6G	MM3-500/6G				
1000 mg	6 ml	30 u	MM1-1G/6G	MM2-1G/6G	MM3-1G/6G				

Upti-Clean® Séries S2F

Remplies avec des particules sphériques pures de 140 µm, les colonnes Upti-Clean Série S2F offrent la possibilité de purifier, sans colmatage ni bouchage, des composés apolaires et moyennement polaires issus de matrices visqueuses.

Les colonnes sont disponibles en polypropylène grade médical pour une utilisation avec des solvants standards.

Les colonnes en verre restent le contenant le plus fiable lors de l'utilisation de solvants organiques puissants. Elles permettent d'éviter la contamination des échantillons par des extractibles issus des frittés ou des tubes standards plastiques.

· Applications : urines, plasmas, huiles, ...

Colonnes Phase Inverse

Masse	Vol.	Qté	C18-S2F	C18U-S2F	
Colonnes	standards	- Frittés PE			
50 mg	1 ml	50 u	C18-S2F-50/1	C18U-S2F-50/1	
100 mg	1 ml	100 u	C18-S2F-100/1	C18U-S2F-100/1	
100 mg	3 ml	50 u	C18-S2F-100/3	C18U-S2F-100/3	
200 mg	3 ml	50 u	C18-S2F-200/3	C18U-S2F-200/3	
500 mg	3 ml	50 u	C18-S2F-500/3	C18U-S2F-500/3	
500 mg	6 ml	30 u	C18-S2F-500/6	C18U-S2F-500/6	
1000 mg	6 ml	30 u	C18-S2F-1G/6	C18U-S2F-1G/6	
2000 mg	6 ml	20 u	C18-S2F-2G/6	C18U-S2F-2G/6	
2000 mg	15 ml	20 u	C18-S2F-2G/15	C18U-S2F-2G/15	
2000 mg	25 ml	20 u	C18-S2F-2G/25	C18U-S2F-2G/25	
Colonnes	LRC - Frit	tés PE			
100 mg	LRC 15	50 u	C18-S2F-100LRC	C18U-S2F-100LRC	
200 mg	LRC 15	50 u	C18-S2F-200LRC	C18U-S2F-200LRC	
500 mg	LRC 15	50 u	C18-S2F-500LRC	C18U-S2F-500LRC	
Colonnes	verre - Fri	ttés PTFE			
200 mg	6 ml	30 u	C18-S2F-200/6G	C18U-S2F-200/6G	
500 mg	6 ml	30 u	C18-S2F-500/6G	C18U-S2F-500/6G	
1000 mg	6 ml	30 u	C18-S2F-1G/6G	C18U-S2F-1G/6G	

Upti-Clean Recovery®

De récentes études montrent que les silices 60 Å n'exploitent pas l'intégralité de leurs surfaces spécifiques dans les applications d'extraction en phase solide. Cela induit des problèmes de rendement et de reproductibilité.

Développées sur une base de silice ultra pure et sphérique, les colonnes Upti-Clean Recovery® sont la solution pour pallier ces phénomènes physiques. Elles exploitent 100% de leur surface spécifique dans toute les conditions de solvant et notamment en phase 100% aqueuse. Les purifications sont plus reproductibles et répétables. La technologie de greffage Interchim REC18 (C18 end capped) contribue à la qualité et performance de ce produit.

Résistantes aux solvants agressifs, les colonnes en verre munies de frittés PTFE garantissent des purifications sans aucun extractible.

Upti-Clean Recovery® REC18

Silice greffée C18 "end capped" qui a été développée pour la purification de composés apolaires et moyennement polaires en milieu aqueux.

Upti-Clean Recovery® RESI

Silice vierge qui s'utilise pour extraire des composés polaires et moyennement polaires issus de matrices organiques.

Domaine d'application : Pharmaceutique & Environnement

Masse	Vol.	Qté	REC18	RESI				
Colonnes st	andards - F	rittés PE						
50 mg	1 ml	50 u	REC18-50/1	RESI-50/1				
100 mg	1 ml	100 u	REC18-100/1	RESI-100/1				
100 mg	3 ml	50 u	REC18-100/3	RESI-100/3				
200 mg	3 ml	50 u	REC18-200/3	RESI-200/3				
500 mg	3 ml	50 u	REC18-500/3	RESI-500/3				
500 mg	6 ml	30 u	REC18-500/6	RESI-500/6				
1000 mg	6 ml	30 u	REC18-1G/6	RESI-1G/6				
2000 mg	6 ml	20 u	REC18-2G/6	RESI-2G/6				
2000 mg	15 ml	20 u	REC18-2G/15	RESI-2G/15				
2000 mg	25 ml	20 u	REC18-2G/25	RESI-2G/25				
Colonnes Li	RC - Frittés	PE						
100 mg	LRC 15	50 u	REC18-100LRC	RESI-100LRC				
200 mg	LRC 15	50 u	REC18-200LRC	RESI-200LRC				
500 mg	LRC 15	50 u	REC18-500LRC	RESI-500LRC				
Colonnes ve	Colonnes verre - Frittés PTFE							
200 mg	6 ml	30 u	REC18-200/6G	RESI-200/6G				
500 mg	6 ml	30 u	REC18-500/6G	RESI-500/6G				
1000 mg	6 ml	30 u	REC18-1G/6G	RESI-1G/6G				

<u>woo</u> interchim

A.78

Colonnes Upti-Clean®

Upti-Clean® Séries Spéciales

Complémentaire aux Séries S et S2F, la gamme de colonnes Upti-Clean® Séries Spéciales offre aux utilisateurs de nouvelles sélectivités pour l'extraction par SPE. Les formats des colonnes en polypropylène grade médical sont compatibles avec la plupart des solvants d'extraction. Les frittés polyéthylène ultra pur offrent une très bonne mouillabilité. Les écoulements des solvants et des échantillons sont parfaitement reproductibles évitant ainsi la variabilité des rendements d'extraction.

Résistantes aux solvants agressifs, les colonnes en verre munies de frittés PTFE garantissent des purifications sans aucun extractible.

Florisil

Fonctionnant sur la base d'interactions polaires, le Florisil ou silicate de magnésium est idéal pour piéger rapidement des impuretés polaires dans des matrices apolaires. Il peut servir d'alternative aux silices vierges traditionnelles lors d'utilisation de solvants visqueux. Le grade PR (Pesticides Residus) correspond parfaitement aux méthodes de purifications de pesticides chlorés en milieux organiques.

Masse	Vol.	Qté	FL	FLPR	
Colonnes	standards -	Frittés PE			
200 mg	3 ml	50 u	FL-200/3	FLPR-200/3	
500 mg	3 ml	50 u	FL-500/3	FLPR-500/3	
500 mg	6 ml	30 u	FL-500/6	FLPR-500/6	
1000 mg	6 ml	30 u	FL-1G/6	FLPR-1G/6	
2000 mg	6 ml	20 u	FL-2G/6	FLPR-2G/6	
2000 mg	15 ml	20 u	FL-2G/15	FLPR-2G/15	
2000 mg	25 ml	20 u	FL-2G/25	FLPR-2G/25	
Colonnes	LRC - Frittés	PTFE			
200 mg	LRC 15	50 u	FL-200LRC	FLPR-200LRC	
500 mg	LRC 15	50 u	FL-500LRC	FLPR-500LRC	
Colonnes	verre - Fritté	s PTFE			
200 mg	6 ml	30 u	FL-200/6G	FLPR-200/6G	
500 mg	6 ml	30 u	FL-500/6G	FLPR-500/6G	
1000 mg	6 ml	30 u	FL-1G/6G	FLPR-1G/6G	

Tube PP droit Frittés PE 20 µm
Colonne LRC
Tube PP Frittés PE 20 µm
Colonne verre
Tube en verre

Colonne standard

Frittés PTFE

20 µm

Upti-Clean® Séries Spéciales

Alumine

Les déficiences électroniques de l'atome d'aluminium sont responsables de ses propriétés si spécifiques d'appariement ionique en milieux aqueux ou organiques. Le traitement acide de l'alumine lui confère la possibilité de retenir des espèces chimiques cationiques. Les alumines basiques présentent une forte affinité pour les espèces anioniques. L'alumine neutre reste très efficace pour purifier des composés à fonctions polaires non ionisables.

Applications: environnement, recherche.

Masse	Vol.	Qté	Alumine Acide	Alumine Basique	Alumine Neutre
Colonnes	standards -	Frittés PE			
200 mg	3 ml	50 u	ALA-200/3	ALB-200/3	ALN-200/3
500 mg	3 ml	50 u	ALA-500/3	ALB-500/3	ALN-500/3
500 mg	6 ml	30 u	ALA-500/6	ALB-500/6	ALN-500/6
1000 mg	6 ml	30 u	ALA-1G/6	ALB-1G/6	ALN-1G/6
2000 mg	6 ml	20 u	ALA-2G/6	ALB-2G/6	ALN-2G/6
2000 mg	15 ml	20 u	ALA-2G/15	ALB-2G/15	ALN-2G/15
2000 mg	25 ml	20 u	ALA-2G/25	ALB-2G/25	ALN-2G/25
Colonnes LRC - Frittés PTFE					
200 mg	LRC15	50 u	ALA-200LRC	ALB-200LRC	ALN-200LRC
500 mg	LRC15	50 u	ALA-500LRC	ALB-500LRC	ALN-500LRC

Amberlite[™]

Polymères de première génération, les résines Amberlites™ sont utilisées pour la séparation rapide et peu sélective de familles de composés principalement issus de fluides biologiques.

Masse	Vol.	Qté	XAD-2			
Colonnes s	Colonnes standards - Frittés PE					
100 mg	1 ml	100 u	XAD2-100/1			
200 mg	3 ml	50 u	XAD2-200/3			
500 mg	3 ml	50 u	XAD2-500/3			
500 mg	6 ml	30 u	XAD2-500/6			
1000 mg	6 ml	30 u	XAD2-1G/6			
1000 mg	12 ml	20 u	XAD2-1G/12			
2000 mg	6 ml	30 u	XAD2-2G/6			
2000 mg	12 ml	20 u	XAD2-2G/12			
5000 mg	35 ml	20 u	XAD2-5G/35			
10000 mg	60 ml	12 u	XAD2-10G/60			
20000 mg	60 ml	12 u	XAD2-20G/60			

Upti-Clean® Séries Spéciales

Polyamide

Support Nylon présentant des fonctions amides, le polyamide est une solution possible pour l'extraction de composés aromatiques tels que PAH ou flavanoïdes.

Masse	Vol.	Qté	P6			
Colonnes	Colonnes standards - Frittés PE					
100 mg	1 ml	100 u	P6-100/1			
100 mg	3 ml	50 u	P6-100/3			
200 mg	3 ml	50 u	P6-200/3			
500 mg	3 ml	50 u	P6-500/3			
500 mg	6 ml	30 u	P6-500/6			
1000 mg	6 ml	30 u	P6-1G/6			
2000 mg	6 ml	20 u	P6-2G/6			
2000 mg	15 ml	20 u	P6-2G/15			
2000 mg	25 ml	20 u	P6-2G/25			

Upti-Clean Wide Pore

Constituées de silice sphérique pure, la gamme Upti-clean Wide Pore vous offre plusieurs sélectivités pour extraire, purifier, concentrer, dessaler les échantillons contenant des peptides, proteines et autres macromolécules.

Masse	Vol.	Qté	WC4	WC8	WSC
50 mg	1 ml	50 u	WC4-50/1	WC8-50/1	WSC-50/1
100 mg	1 ml	100 u	WC4-100/1	WC8-100/1	WSC-100/1
100 mg	3 ml	50 u	WC4-100/3	WC8-100/3	WSC-100/3
200 mg	3 ml	50 u	WC4-200/3	WC8-200/3	WSC-200/3
500 mg	3 ml	50 u	WC4-500/3	WC8-500/3	WSC-500/3
500 mg	6 ml	30 u	WC4-500/6	WC8-500/6	WSC-500/6
1000 mg	6 ml	30 u	WC4-1G/6	WC8-1G/6	WSC-1G/6
2000 mg	6 ml	20 u	WC4-2G/6	WC8-2G/6	WSC-2G/6
2000 mg	15 ml	20 u	WC4-2G/15	WC8-2G/15	WSC-2G/15
2000 mg	25 ml	20 u	WC4-2G/25	WC8-2G/25	WSC-2G/25

Cartouches Upti-Clean®

Simples d'utilisation, les cartouches Upti-Clean sont spécialement développées pour la mise en œuvre rapide et efficace de purifications SPE.

Il n'est pas nécessaire d'avoir un appareil SPE spécifique, seulement des seringues à embout "luer" qui vont permettre le transfert de l'échantillon vers l'adsorbant.

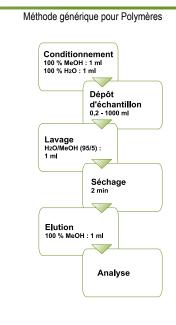
Les chimies de greffages C18 assurent l'extraction de composés apolaires et moyennement polaires pour des matrices généralement aqueuses.

La silice vierge permet l'extraction de composés polaires dans des solvants apolaires.

La coque de protection en polypropylène est compatible avec un grand nombre de solvants.

- Applications courantes: Pharmaceutique, Toxicologie, Suivi clinique, ...
- Applications détournées : Stockage et Transport d'échantillons.

Type	Réf. REC18	Qté	Type	Réf. RESI	Qté			
Adsorba	Adsorbant Recovery							
300 mg	REC18-390/SC-50	50 u	300 mg	RESI-300/SC-50	50 u			
600 mg	REC18-910/SC-50	50 u	600 mg	RESI-700/SC-50	50 u			
900 mg	REC18-1690/SC-50	50 u	900 mg	RESI-1300/SC-50	50 u			
Type	Réf. C18	Qté	Type	Réf. SI	Qté			
Adsorba	ınt Upti-clean							
300 mg	C18-300/SC-50	50 u	300 mg	SI-300/SC-50	50 u			
600 mg	C18-600/SC-50	50 u	600 mg	SI-600/SC-50	50 u			
900 mg	C18-900/SC-50	50 u	900 mg	SI-900/SC-50	50 u			


La plupart des adsorbants Upti-Clean (silices greffées, Florisil, alumine, ...) sont disponibles sur demande en format cartouche.

N'hésitez pas à nous interroger pour plus d'informations.

Polymères SPE Interchim

Introduction

Interchim propose une gamme complète de Polymères, de natures chimiques variées, pourvus de caractéristiques intrinsèques spécifiques permettant la purification et/ou pré-concentration de molécules et macromolécules issues de tous types de matrices.

- PolyClean™, gamme de polymères mixtes (hydrophile/hydrophobe) constitués de particules sphériques ultrapures, modifiées ou non par des groupement échanges d'ions, pour l'extraction et la préconcentration de composés acides, basiques et neutres.
- Atoll™, gamme de polymères PSDVB hydrophobes, offrant différentes capacités de charges pour des composés non-polaires à moyennement polaires.
- BioP™, polymères mixtes (hydrophile/hydrophobe) Wide Pore dédiés à l'extraction et préconcentration de macromolécules biologiques.

Les natures variées des polymères PolyClean, Atoll et BioP engendre des sélectivités spécifiques pour chaque matrice et famille de composés.

La technologie de remplissage Interchim permet une précison des pesées automatiques à +/- 1% près et garantit répétabilité et reproductibilité pour des extractions avec des taux de récupération optimisés.

Chaque produit fini est délivré avec son certificat individuel mentionnant le numéro de fabrication et les numéros de lots de phase utilisés permettant ainsi une meilleure tracabilité de la production.

Le conditionnement des produits est spécialement étudié pour un stockage de longue durée à l'abri de l'air et de la lumière.

Les formats de colonnes PolyClean, Atoll et BioP sont adaptables sur tous les appareils SPE du marché.

Nom	Code	Туре	Taille de particules	Surface spécifique	Modification	Capacité d'échange
PolyClean 2H	302H 2H	Mixed Polymer (hydrophilic /hydrophobic)	30 μm 60 μm	850m²/g	non	n.a
PolyClean HCX	30HCX HCX	Mixed Polymer (hydrophobic)	30 μm 60 μm	850m²/g	Strong Cation Exch.	1 meq/g
PolyClean HCW	30HCW HCW	Mixed Polymer (hydrophobic)	30 μm 60 μm	850m²/g	Weak Cation Exch.	0,8 meq/g
PolyClean HAX	30HAX HAX	Mixed Polymer (hydrophobic)	30 μm 60 μm	850m²/g	Strong Anion Exch.	0,3 meq/g
PolyClean HAW	30HAW HAW	Mixed Polymer (hydrophobic)	30 μm 60 μm	850m²/g	Weak Anion Exch.	0,7 meq/g
Atoll Xtrem	Χ	PSDVB	40 µm	800m²/g	non	n.a
Atoll Xtrem Capacity	30XC XC	PSDVB	30 μm 70 μm	1500m²/g	non	n.a
Atoll Xtrem Capacity Wide	XWP Pore	PSDVB	90 µm	1200m²/g	non	n.a
BioP P	30P P	Mixed Polymer (hydrophilic /hydrophobic)	30μm 60 μm	400m²/g	non	n.a
BioP CX	30CX CX	Mixed Polymer (hydrophobic)	30 μm 60 μm	400m²/g	Strong Cation Exch.	2,0 meq/g
BioP CW	30CW CW	Mixed Polymer (hydrophobic)	30 μm 60 μm	400m²/g	Weak Cation Exch.	2,0 meq/g
BioP AX	30AX AX	Mixed Polymer (hydrophilic /hydrophobic)	30 μm 60 μm	400m²/g	Strong Anion Exch.	2,0 meq/g

A.82

Pour plus d'informations, référez vous aux pages A.62 à A.70 ou contactez notre service technique.

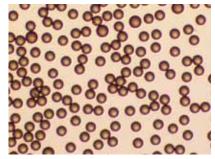
PolyClean™ 2H, double interaction Hydrophile/Hydrophobe

Issu des derniers travaux R&D Interchim, le polymère PolyClean™ 2H dispose d'une structure propriétaire de type mixte Hydrophile/Hydrophobe.

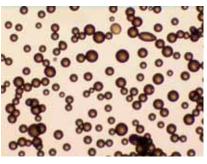
Le support PolyClean™ 2H permet d'optimiser les méthodes développées sur des adsorbants classiquement utilisés en phase inverse (silices greffées ou polymères) qui ne possèdent pas la sélectivité et la capacité de charge requise.

Disponibles en 30 & 60 µm, les particules de polymère sphériques ultrapures permettent l'extraction de composés acides, basiques et neutres dans tous types de matrices.

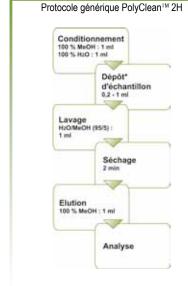
On privilégiera une granulométrie de 60 µm pour des échantillons visqueux. Le support 30 µm permet d'obtenir un facteur de préconcentration supérieur (à masse de


Le support 30 µm permet d'obtenir un facteur de préconcentration supérieur (à masse de polymère égale) comparativement à du 60 µm. L'étape d'évaporation n'est ainsi plus obligatoire.

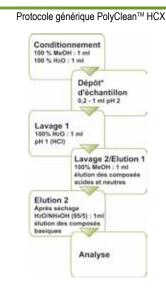
Applications:


- Principes Actifs et leurs métabolites dans les fluides et tissus biologiques.
- Polluants organiques à l'état de traces dans les matrices environnementales.
- Perturbateurs endocrinien.

Masse	Vol.	Qté	PolyClean 2H	PolyClean 30µm 2H
Colonnes star	ndards - Frittés P	E		
30 mg	1 mL	50	2H-30/1	302H-30/1
100 mg	1 mL	50	2H-100/1	302H-100/1
30 mg	3 mL	50	2H-30/3	302H-30/3
60 mg	3 mL	50	2H-60/3	302H-60/3
100 mg	3 mL	50	2H-100/3	302H-100/3
200 mg	3 mL	50	2H-200/3	302H-200/3
150 mg	6 mL	30	2H-150/6	302H-150/6
200 mg	6 mL	30	2H-200/6	302H-200/6
500 mg	6 mL	30	2H-500/6	302H-500/6
500 mg	15 mL	20	2H-500/15	302H-500/15
1000 mg	15 mL	20	2H-1G/15	302H-1G/15
1000 mg	25 mL	20	2H-1G/25	302H-1G/25
Colonnes LRC	- Frittés PE			
30 mg	LRC	50	2H-30LRC	302H-30LRC
60 mg	LRC	50	2H-60LRC	302H-60LRC
Colonnes Veri	re - Frittés PTFE			
200 mg	6 mL	30	2H-200/6G	302H-200/6G


Accurate Bed Technology™ vs Compétiteurs

PolyClean™ 2H 60µm


Compétiteur

^{*} Il est possible d'ajouter H3PO4 (2% du volume d'échantillon) pour favoriser l'élimination des protéines de la matrice.

PolyClean™ HCX, mode mixte / SCX pour l'extraction de composés basiques

Le support PolyClean™ HCX est un polymère mixte modifié par un échangeur de type SCX (Echange de Cations Fort). Il induit une importante sélectivité pour la purification et préconcentration de bases faibles.

Différents mécanismes de rétention sont présents :

Interaction forte de type SCX (capacité d'échange ionique de 1meq/g). Interaction mixte Hydrophile/Hydrophobe.

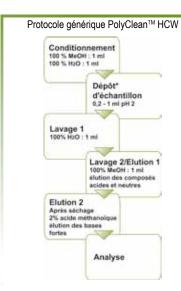
Applications:

- Principes actifs et leurs métabolites issus de milieux biologiques (sang, urine, plasma, chair...)
- Analyses environnementales : détermination de Pesticides, Herbicides.

Masse	Vol.	Qté	PolyClean HCX	PolyClean 30 µm HCX
Colonnes sta	ndards - Frittés P	E		
30 mg	1 mL	50	HCX-30/1	30HCX-30/1
100 mg	1 mL	50	HCX-100/1	30HCX-100/1
30 mg	3 mL	50	HCX-30/3	30HCX-30/3
60 mg	3 mL	50	HCX-60/3	30HCX-60/3
100 mg	3 mL	50	HCX-100/3	30HCX-100/3
200 mg	3 mL	50	HCX-200/3	30HCX-200/3
150 mg	6 mL	30	HCX-150/6	30HCX-150/6
200 mg	6 mL	30	HCX-200/6	30HCX-200/6
500 mg	6 mL	30	HCX-500/6	30HCX-500/6
500 mg	15 mL	20	HCX-500/15	30HCX-500/15
1000 mg	15 mL	20	HCX-1G/15	30HCX-1G/15
1000 mg	25 mL	20	HCX-1G/25	30HCX-1G/25
Colonnes LR	C - Frittés PE			
30 mg	LRC	50	HCX-30LRC	30HCX-30LRC
60 mg	LRC	50	HCX-60LRC	30HCX-60LRC
Colonnes Ver	re - Frittés PTFE			
200 mg	6 mL	30	HCX-200/6G	30HCX-200/6G

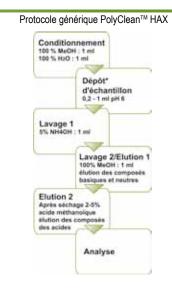
PolyClean™ HCW, mode mixte / WCX pour la séparation de bases fortes

Le nouveau PolyClean™ HCW, modifié par un échangeur de type WCX (Echange de Cations Faible), est dédié à la purification et préconcentration de bases fortes, amines quaternaires, ...


Différents mécanismes de rétention sont présents :

Interaction ionique de type WCX (capacité d'échange ionique de 0.8meq/g). Interaction mixte Hydrophile/Hydrophobe.

Applications:


- Composés fortement basiques issus de milieux biologiques (sang, urine, plasma, chair...)
- · Amines Quaternaires

Masse	Vol.	Qté	PolyClean HCW	PolyClean 30 µm HCW
Colonnes star	ndards - Frittés P	E	·	
30 mg	1 mL	50	HCW-30/1	30HCW-30/1
100 mg	1 mL	50	HCW-100/1	30HCW-100/1
30 mg	3 mL	50	HCW-30/3	30HCW-30/3
60 mg	3 mL	50	HCW-60/3	30HCW-60/3
100 mg	3 mL	50	HCW-100/3	30HCW-100/3
200 mg	3 mL	50	HCW-200/3	30HCW-200/3
150 mg	6 mL	30	HCW-150/6	30HCW-150/6
200 mg	6 mL	30	HCW-200/6	30HCW-200/6
500 mg	6 mL	30	HCW-500/6	30HCW-500/6
500 mg	15 mL	20	HCW-500/15	30HCW-500/15
1000 mg	15 mL	20	HCW-1G/15	30HCW-1G/15
1000 mg	25 mL	20	HCW-1G/25	30HCW-1G/25
Colonnes LRC	- Frittés PE			
30 mg	LRC	50	HCW-30LRC	30HCW-30LRC
60 mg	LRC	50	HCW-60LRC	30HCW-60LRC
Colonnes Ver	re - Frittés PTFE			
200 mg	6 mL	30	HCW-200/6G	30HCW-200/6G

PolyClean™ HAX, mode mixte / SAX pour la séparation de composés acides

Le polymère PolyClean™ HAX, modifié par un échangeur de type SAX (Echange d'Anions Fort), est dédié à la purification et préconcentration d'acides faibles.

Différents mécanismes de rétention sont présents : Interaction forte de type SAX (capacité d'échange ionique de 0.3meq/g). Interaction mixte Hydrophile/Hydrophobe.

Applications:

- Métabolites, composés acides issus de fluides et tissus biologiques.
- Hygiène alimentaire : conservateurs, contaminants.

Masse	Vol.	Qté	PolyClean HAX	PolyClean 30 µm HAX
Colonnes sta	ndards - Frittés P	E	•	
30 mg	1 mL	50	HAX-30/1	30HAX-30/1
100 mg	1 mL	50	HAX-100/1	30HAX-100/1
30 mg	3 mL	50	HAX-30/3	30HAX-30/3
60 mg	3 mL	50	HAX-60/3	30HAX-60/3
100 mg	3 mL	50	HAX-100/3	30HAX-100/3
200 mg	3 mL	50	HAX-200/3	30HAX-200/3
150 mg	6 mL	30	HAX-150/6	30HAX-150/6
200 mg	6 mL	30	HAX-200/6	30HAX-200/6
500 mg	6 mL	30	HAX-500/6	30HAX-500/6
500 mg	15 mL	20	HAX-500/15	30HAX-500/15
1000 mg	15 mL	20	HAX-1G/15	30HAX-1G/15
1000 mg	25 mL	20	HAX-1G/25	30HAX-1G/25
Colonnes LR	C - Frittés PE			
30 mg	LRC	50	HAX-30LRC	30HAX-30LRC
60 mg	LRC	50	HAX-60LRC	30HAX-60LRC
Colonnes Ver	re - Frittés PTFE			
200 mg	6 mL	30	HAX-200/6G	30HAX-200/6G

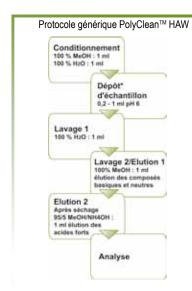
Extraction sur phase solide

Préparation d'échantillons

Colonnes PolyClean™

PolyClean™ HAW, mode mixte / WAX pour la séparation d'acides forts

Le support PolyClean™ HAW, modifié part un échangeur de type WAX (Echange d'Anions Faible), est dédié à la purification et préconcentration des acides forts, composés perfluorés.

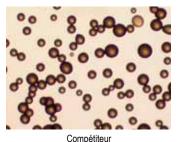

Différents mécanismes de rétention sont présents :

Interaction ionique de type WAX (capacité d'échange ionique de 0.7 meq/g). Interaction mixte Hydrophile/Hydrophobe.

Applications:

- Métabolites, composés fortement acides issus de fluides et tissus biologiques.
- Hygiène alimentaire : conservateurs, contaminants.

Masse	Vol.	Qté	PolyClean HAW	PolyClean 30 µm HAW
Colonnes sta	ndards - Frittés P	E		
30 mg	1 mL	50	HAW-30/1	30HAW-30/1
100 mg	1 mL	50	HAW-100/1	30HAW-100/1
30 mg	3 mL	50	HAW-30/3	30HAW-30/3
60 mg	3 mL	50	HAW-60/3	30HAW-60/3
100 mg	3 mL	50	HAW-100/3	30HAW-100/3
200 mg	3 mL	50	HAW-200/3	30HAW-200/3
150 mg	6 mL	30	HAW-150/6	30HAW-150/6
200 mg	6 mL	30	HAW-200/6	30HAW-200/6
500 mg	6 mL	30	HAW-500/6	30HAW-500/6
500 mg	15 mL	20	HAW-500/15	30HAW-500/15
1000 mg	15 mL	20	HAW-1G/15	30HAW-1G/15
1000 mg	25 mL	20	HAW-1G/25	30HAW-1G/25
Colonnes LR	C - Frittés PE			
30 mg	LRC	50	HAW-30LRC	30HAW-30LRC
60 mg	LRC	50	HAW-60LRC	30HAW-60LRC
Colonnes Ver	re - Frittés PTFE			
200 mg	6 mL	30	HAW-200/6G	30HAW-200/6G


Colonnes Atoll™

Accurate Bed Technology™ vs Compétiteurs

Atoll™ XC

Competiteur

Atoll Xtrem

Le polymère Atoll Xtrem de type Polystyrènedivinyl benzène (PSDVB) se présente comme un support hydrophobe dédié à l'extraction et pré-concentration de composés apolaires à moyennement polaires grâce à une surface spécifique plus importante que les silices traditionnelles.

C'est une alternative de premier choix aux supports classiquement utilisés en phase inverse (silices greffés C18, C8, ...).

Contrairement aux silices, le polymère présente l'avantage d'être stable à tous les pH et compatible avec l'ensemble des solvants usuels.

Résistantes aux solvants agressifs, les colonnes en verre munies de frittés PTFE garantissent des purifications sans aucun extractible.

Applications:

 Composés apolaires et moyennement polaires dans des échantillons aqueux ou organiques.

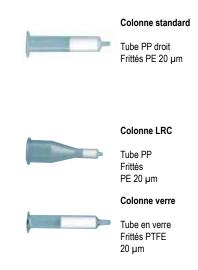
Masse	Vol.	Qté	Atoll X			
Colonnes stand	lards - Frittés Pl	Ē				
30 mg	1 ml	50	X-30/1			
100 mg	1 ml	50	X-100/1			
30 mg	3 ml	50	X-30/3			
60 mg	3 ml	50	X-60/3			
100 mg	3 ml	50	X-100/3			
200 mg	3 ml	50	X-200/3			
150 mg	6 ml	30	X-150/6			
200 mg	6 ml	30	X-200/6			
500 mg	6 ml	30	X-500/6			
500 mg	15 ml	20	X-500/15			
1000 mg	15 ml	20	X-1G/15			
1000 mg	25 ml	20	X-1G/25			
Colonnes LRC	- Frittés PE					
30 mg	LRC	50	X-30LRC			
60 mg	LRC	50	X-60LRC			
Colonnes Verre - Frittés PTFE						
200 mg	6 ml	30	X-200/6G			

Atoll Xtrem Capacity

Possédant la plus importante surface spécifique du marché (1500 m²/g), le polymère Atoll Xtrem Capacity se présente comme un adsorbant universel pour la purification et la pré-concentration de composés polaires et apolaires.

Capacité de charge 2 à 3 fois supérieure à celle des silices classiques.

La nature de ses interactions permet l'adsorption de molécules acides, basiques et neutres.


Sa structure fortement réticulée est stable à pH compris entre 0 et 14.

Les particules sphériques pures, disponibles en 30 et 70 µm, permettent une parfaite reproductibilité des purifications quels que soient les matrices et les solvants utilisés.

Résistantes aux solvants agressifs, les colonnes en verre munies de frittés PTFE garantissent des purifications sans aucun extractible.

- Applications Pharmaceutiques: médicaments, drogues et leurs métabolites dans les fluides biologiques (sang total, plasmas, urines, ...)
- Applications Environnement: composés apolaires ou polaires dans l'eau ou dans toute autre matrice (HAP, PCB, carbamates, phényl-urées, acrylamide, glyphosate, ...)

Masse	Vol.	Qté	Atoll XC	Atoll 30 µm XC				
Colonnes sta	ndards - Frittés F	PΕ						
30 mg	1 ml	50	XC-30/1	30XC-30/1				
100 mg	1 ml	50	XC-100/1	30XC-100/1				
30 mg	3 ml	50	XC-30/3	30XC-30/3				
60 mg	3 ml	50	XC-60/3	30XC-60/3				
100 mg	3 ml	50	XC-100/3	30XC-100/3				
200 mg	3 ml	50	XC-200/3	30XC-200/3				
150 mg	6 ml	30	XC-150/6	30XC-150/6				
200 mg	6 ml	30	XC-200/6	30XC-200/6				
500 mg	6 ml	30	XC-500/6	30XC-500/6				
500 mg	15 ml	20	XC-500/15	30XC-500/15				
1000 mg	15 ml	20	XC-1G/15	30XC-1G/15				
1000 mg	25 ml	20	XC-1G/25	30XC-1G/25				
Colonnes LRC - Frittés PE								
30 mg	LRC	50	XC-30LRC	30XC-30LRC				
60 mg	LRC	50	XC-60LRC	30XC-60LRC				
Colonnes Verre - Frittés PTFE								
200 mg	6 ml	30	XC-200/6G	30XC-200/6G				

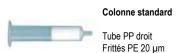
Pour plus d'informations sur les références bibliographiques liées à ce produit, contacter notre service commercial. inter

A.89

Colonnes Atoll™

Atoll Xtrem Capacity Wide Pore

Polystyrènedivinyl benzène à très forte surface spécifique (1200 m²/g), Atoll Xtrem Capacity Wide Pore est constitué de particules sphériques pures de 90 μ m.


Grâce à une très forte capacité de charge, il apporte une solution nouvelle pour la purification de protéines et peptides issus de fluides biologiques. Ses larges pores ainsi que son importante granulométrie contribuent à des extractions rapides, très efficaces et sans colmatage de médicaments et/ou de métabolites de médicaments contenus dans des matrices polaires.

Son fort taux de réticulation lui confère une stabilité exceptionnelle diminuant ainsi les phénomènes de gonflement de l'adsorbant. La limite d'exclusion est d'ailleurs très importante (comprise en 350 - 450 kD). Il est stable à tous les pH.

Résistantes aux solvants agressifs, les colonnes en verre munies de frittés PTFE garantissent des purifications sans aucun extractible.

 Applications: protéines et peptides en milieux polaires, molécules à haute masse moléculaire dans tous types de solvants.

Masse	Vol.	Qté	Atoll XWP	
Colonnes star	ndards - Frittés P	E		
30 mg	1 ml	50	XWP-30/1	
100 mg	1 ml	50	XWP-100/1	
30 mg	3 ml	50	XWP-30/3	
60 mg	3 ml	50	XWP-60/3	
100 mg	3 ml	50	XWP-100/3	
200 mg	3 ml	50	XWP-200/3	
150 mg	6 ml	30	XWP-150/6	
200 mg	6 ml	30	XWP-200/6	
500 mg	6 ml	30	XWP-500/6	
500 mg	15 ml	20	XWP-500/15	
1000 mg	15 ml	20	XWP-1G/15	
1000 mg	25 ml	20	XWP-1G/25	
Colonnes LRC	- Frittés PE			
30 mg	LRC	50	XWP-30LRC	
60 mg	LRC	50	XWP-60LRC	
Colonnes Veri	re - Frittés PTFE			
200 mg	6 ml	30	XWP-200/6G	

A.90

Colonne LRC
Tube PP Frittés PE 20 µm
Colonne verre
Tube en verre

Pour plus d'informations sur les références bibliographiques liées à ce produit, contacter notre service commercial.

20 µm

BioP™

Support polymérique mixte Hydrophile/Hydrophobe greffé avec des groupements échangeurs d'ions, dédiés spécifiquement aux extractions, pré-concentrations des macromolécules biologiques issues de tous fluides biologiques.

La gamme inclue : BioP™ Echange d'Anions Fort - BioP™ Echange de Cations Faible - BioP™ Echange de Cations Fort, BioP™ Mixte non greffé.

La grande surface spécifique $-400~\text{m}^2/\text{G}$ - liée à une grande capacité de charge -2~meq/g - garantissent des rendements d'extraction très élevés.

Applications:

Extraction, Pré-concentration des macromolécules biologiques (peptides, protéines,...).

BioP P et BioP CX

Masse	Vol.	Qté	BioP P	BioP P 30µm	BioP CX	BioP CX 30µm				
Colonnes standards - Frittés PE										
30 mg	1 ml	50	P-30/1	30P-30/1	CX-30/1	30CX-30/1				
100 mg	1 ml	50	P-100/1	30P-100/1	CX-100/1	30CX-100/1				
30 mg	3 ml	50	P-30/3	30P-30/3	CX-30/3	30CX-30/3				
60 mg	3 ml	50	P-60/3	30P-60/3	CX-60/3	30CX-60/3				
100 mg	3 ml	50	P-100/3	30P-100/3	CX-100/3	30CX-100/3				
200 mg	3 ml	50	P-200/3	30P-200/3	CX-200/3	30CX-200/3				
150 mg	6 ml	30	P-150/6	30P-150/6	CX-150/6	30CX-150/6				
200 mg	6 ml	30	P-200/6	30P-200/6	CX-200/6	30CX-200/6				
500 mg	6 ml	30	P-500/6	30P-500/6	CX-500/6	30CX-500/6				
500 mg	15 ml	20	P-500/15	30P-500/15	CX-500/15	30CX-500/15				
1000 mg	15 ml	20	P-1G/15	30P-1G/15	CX-1G/15	30CX-1G/15				
1000 mg	25 ml	20	P-1G/25	30P-1G/25	CX-1G/25	30CX-1G/25				
Colonnes LRC - Frittés PE										
30 mg	LRC	50	P-30LRC	30P-30LRC	CX-30LRC	30CX-30LRC				
60 mg	LRC	50	P-60LRC	30P-60LRC	CX-60LRC	30CX-60LRC				
Colonnes	Colonnes Verre - Frittés PTFE									
200 mg	6 ml	30	P-200/6G	30P-200/6G	CX-200/6G	30CX-200/6G				

BioP AX et BioP CW

Masse Vol. Qté BioP CW BioP CW 30µm BioP AX	BioP AX 30µm								
Colonnes standards - Frittés PE									
30 mg 1 ml 50 CW-30/1 30CW-30/1 AX-30/1	30AX-30/1								
100 mg 1 ml 50 CW-100/1 30CW-100/1 AX-100/1	30AX-100/1								
30 mg 3 ml 50 CW-30/3 30CW-30/3 AX-30/3	30AX-30/3								
60 mg 3 ml 50 CW-60/3 30CW-60/3 AX-60/3	30AX-60/3								
100 mg 3 ml 50 CW-100/3 30CW-100/3 AX-100/3	30AX-100/3								
200 mg 3 ml 50 CW-200/3 30CW-200/3 AX-200/3	30AX-200/3								
150 mg 6 ml 30 CW-150/6 30CW-150/6 AX-150/6	30AX-150/6								
200 mg 6 ml 30 CW-200/6 30CW-200/6 AX-200/6	30AX-200/6								
500 mg 6 ml 30 CW-500/6 30CW-500/6 AX-500/6	30AX-500/6								
500 mg 15 ml 20 CW-500/15 30CW-500/15 AX-500/1	5 30AX-500/15								
1000 mg 15 ml 20 CW-1G/15 30CW-1G/15 AX-1G/15	30AX-1G/15								
1000 mg 25 ml 20 CW-1G/25 30CW-1G/25 AX-1G/25	30AX-1G/25								
Colonnes LRC - Frittés PE									
30 mg LRC 50 CW-30LRC 30CW-30LRC AX-30LRC	C 30AX-30LRC								
60 mg LRC 50 CW-60LRC 30CW-60LRC AX-60LR	C 30AX-60LRC								
Colonnes Verre - Frittés PTFE									
200 mg 6 ml 30 CW-200/6G 30CW-200/6G AX-200/6	G 30AX-200/6G								

Plaques 96 puits Silices

Plaques 96 Puits Upti-Clean® et Upti-Clean® Recovery

Elaborées à partir de la silice Upti-Prep, les plaques 96 puits de très haute qualité **Upti-Clean®** et **Upti-Clean® Recovery** s'inscrivent comme consommables SPE de référence dans la plupart des laboratoires qui automatisent leurs préparations d'échantillons.

Les particules de silice sont pures à 99,9%, la porosité ainsi que la granulométrie sont strictement contrôlées. Le pH d'utilisation de cette silice est compris entre 2 et 9.

La parfaite maîtrise des greffages chimiques apporte reproductibilité des rendements d'extraction avec des taux de recouvrements supérieurs aux silices irrégulières traditionnelles.

La technologie de remplissage Interchim permet une précision des pesées automatiques à +/- 1% près.

Chaque produit fini est livré avec son certificat individuel mentionnant le numéro de fabrication et les numéros de lots de phase utilisés permettant ainsi une meilleure traçabilité de la production. Un certificat de pesée précisant la masse exacte dans chaque puits est également joint au produit.

Le conditionnement des produits est spécialement étudié pour un stockage longue durée à l'abri de l'air et de la lumière.

Nos plaques 96 puits Upti-Clean® sont réalisées en polypropylène grade médical et permettent l'utilisation d'un volume par puits maximum de 2 ml. Leur format standard (127,76 x 85,47 x 19,74 mm) est compatible avec tous les appareils d'extraction et avec tous les automates du marché.

Plaques 96 Puits Upti-Clean® Série-S

Masse Qt	:é l	Upti-clean C18	Upti-clean C18U							
Plaques Phase Inverse										
25 mg 1 u) ر	C18S-25/WP20	C18US-25/WP20							
50 mg 1 u	. (C18S-50/WP20	C18US-50/WP20							
100 mg 1 u	. (C18S-100/WP20	C18US-100/WP20							
Masse Qt	é l	Upti-clean RPAQ	Upti-clean C8	Upti-clean PH						
25 mg 1 i	J F	RPAQ-25/WP20	C8S-25/WP20	PHS-25/WP20						
50 mg 1 i	. F	RPAQ-50/WP20	C8S-50/WP20	PHS-50/WP20						
100 mg 1 u	. F	RPAQ-100/WP20	C8S-100/WP20	PHS-100/WP20						
Masse Qt	é l	Upti-clean SI	Upti-clean NH2							
Plaques Phase No	rmale									
25 mg 1 u		SIS-25/WP20	NH2S-25/WP20							
50 mg 1 u		SIS-50/WP20	NH2S-50/WP20							
100 mg 1 i	.	SIS-100/WP20	NH2S-100/WP20							

Technical Tip

Tous les adsorbants inscrits dans notre guide de sélection pages A. 69 & A. 70 font l'objet d'un remplissage à façon. Les masses d'adsorbant par puits peuvent être standards ou remplies selon vos besoins.

...oa

A.92

Pour vous aider à choisir votre adsorbant, référez vous aux pages A. 62 à A. 70 ou contactez notre service technique.

Minterchim

Plaques 96 puits Silices

Masse	Qté	Upti-clean SCX	Upti-clean MM1	Upti-clean MM2						
Plaques Echange d'ions et Mixed Mode										
25 mg	1 u	SCX-25/WP20	MM1-25/WP20	MM2-25/WP20						
50 mg	1 u	SCX-50/WP20	MM1-50/WP20	MM2-50/WP20						
100 mg	1 u	SCX-100/WP20	MM1-100/WP20	MM2-100/WP20						
Masse	Qté	Upti-clean SAX	Upti-clean MM3	Upti-clean DEAE						
25 mg	1 u	SAX-25/WP20	MM3-25/WP20	DEAE-25/WP20						
50 mg	1 u	SAX-50/WP20	MM3-50/WP20	DEAE-50/WP20						
100 mg	1 u	SAX-100/WP20	MM3-100/WP20	DEAE-100/WP20						

Plaque 96 puits PP 2 ml Frittés 20 µm PE

Plaques 96 Puits Recovery

Masse	Qté	Recovery C18	
Plaques Pha	ase Inverse		
25 mg	1 u	REC18-25/WP20	
50 mg	1 u	REC18-50/WP20	
100 mg	1 u	REC18-100/WP20	
Massa	044	December 61	
Masse	Qté	Recovery SI	
Plaques Pha	ase Normale		
25 mg	1 u	RESI-25/WP20	
50 mg	1 u	RESI-50/WP20	
100 mg	1 u	RESI-100/WP20	

A.94

≫interchim

Plaques 96 puits Polymères

Technical Tip

Tous les adsorbants inscrits dans notre guide de sélection pages A.69-A.70 font l'objet d'un remplissage à façon. Les masses d'adsorbant par puits peuvent être standards ou remplies selon vos besoins.

Plaque 96 puits PP 2 ml Frittés 20 µm PE

Pour vous aider à choisir votre adsorbant, référez vous pages A. 62 à A. 70 ou contactez notre service technique.

Poly-Clean 2H

2H-30/WP20

Plaques 96 Puits PolyClean™, Atoll™ et BioP™

Interchim propose une gamme complète de Polymères, de natures chimiques variées, pourvus de caractéristiques intrinsèques spécifiques permettant la purification et/ou pré-concentration de molécules et macromolécules issues de tous types de matrices.

- PolyClean™, gamme de polymères mixtes (hydrophile/hydrophobe) constitués de particules sphériques ultrapures, modifiées ou non par des groupement échanges d'ions, pour l'extraction et la préconcentration de composés acides, basiques et neutres.
- ▶ AtoII™, gamme de polymères PSDVB hydrophobes, offrant différentes capacités de charges pour des composés non-polaires à moyennement polaires.
- BioP™, polymères mixtes (hydrophile/hydrophobe) Wide Pore dédiés à l'extraction et préconcentration de macromolécules biologiques.

La technologie de remplissage Interchim permet une précision des pesées automatiques à +/- 1% près.

Chaque produit fini est délivré avec son certificat individuel mentionnant le numéro de fabrication et les numéros de lots de phase utilisés. La traçabilité de la production est garantie. Un certificat de pesée précisant la masse exacte dans chaque puits est également joint au produit.

Le conditionnement des produits est spécialement étudié pour un stockage longue durée à l'abri de l'air et de la lumière.

Nos plaques **96 puits PolyClean™**, **Atoll™**, **BioP™** sont réalisées en polypropylène grade médical et permettent l'utilisation d'un volume par puits maximum de 2 ml. Leur format standard (127,76 x 85,47 x 19,74 mm) est compatible avec tous les appareils d'extraction et avec tous les automates du marché.

Poly-Clean 30HCW

30HCW-30/WP20

Poly-Clean HCW

HCW-30/WP20

Poly-Clean HCX

HCX-30/WP20

Plaques 96 puits PolyClean

1 u 302H-30/WP20

Masse Qté Poly-Clean 302H

o og		***************************************	••/•	***************************************	= 0		
50 mg	1 u	302H-50/WP20	2H-50/WP20	30HCX-50/WP20	HCX-50/WP20	30HCW-50/WP20	HCW-50/WP20
60 mg	1 u	302H-60/WP20	2H-60/WP20	30HCX-60/WP20	HCX-60/WP20	30HCW-60/WP20	HCW-60/WP20
Masse	Qté	Poly-Clean 30HAX	Poly-Clean HAX	Poly-Clean 30HAW	Poly-Clean HAW		
30 mg	1 u	30HAX-30/WP20	HAX-30/WP20	30HAW-30/WP20	HAW-30/WP20		
50 mg	1 u	30HAX-50/WP20	HAX-50/WP20	30HAW-50/WP20	HAW-50/WP20		
60 mg	1 u	30HAX-60/WP20	HAX-60/WP20	30HAW-60/WP20	HAW-60/WP20		

Poly-Clean 30HCX

30HCX-30/WP20

Plaques 96 puits Atoll

Masse	Qté	Atoll X	Atoll 30XC	Atoll XC	Atoll XWP
30 mg	1 u	X-30/WP20	30XC-30/WP20	XC-30/WP20	XWP-30/WP20
50 mg	1 u	X-50/WP20	30XC-50/WP20	XC-50/WP20	XWP-50/WP20
60 mg	1 u	X-60/WP20	30XC-60/WP20	XC-60/WP20	XWP-60/WP20

Plagues 96 puits BioP

Masse	Qté	BioP 30P	BioP P	BioP 30CX	BioP CX	BioP 30CW	BioP CW	BioP 30AX	BioP AX
30 mg	1 u	30P-30/WP20	P-30/WP20	30CX-30/WP20	CX-30/WP20	30CW-30/WP20	CW-30/WP20	30AX-30/WP20	AX-30/WP20
50 mg	1 u	30P-50/WP20	P-50/WP20	30CX-50/WP20	CX-50/WP20	30CW-50/WP20	CW-50/WP20	30AX-50/WP20	AX-50/WP20
60 mg	1 u	30P-60/WP20	P-60/WP20	30CX-60/WP20	CX-60/WP20	30CW-60/WP20	CW-60/WP20	30AX-60/WP20	AX-60/WP20

Plaques 48 Puits Upti-Clean[®] & Atoll™

Développées principalement pour les chimistes, les plaques **48 puits Upti-Clean & Atoll** permettent l'utilisation de grands volumes d'échantillons pour la purification de tous types de composés lors de l'élaboration de librairies de produits en HTS (High Through put Screening) ou en chimie combinatoire.

La capacité de charge pouvant être 10 fois supérieure aux plaques 96 puits conventionnelles, les masses d'adsorbant possibles sont de 100 mg à 1 g par puits.

Elaborées à partir de la silice Upti-Prep, les particules de silice sont pures à 99,9%, la porosité ainsi que la granulométrie sont strictement contrôlées. Le pH d'utilisation de cette silice est compris entre 2 et 9.

La parfaite maîtrise des greffages chimiques apporte reproductibilité et répétabilité des rendements d'extraction avec des taux de recouvrement supérieurs aux silices irrégulières traditionnelles.

Les polymères Atoll ATL & XWP augmentent considérablement la capacité de charge par rapport aux silices Upti-Clean.

Le polymère Atoll ATL permet le passage d'un échantillon plus visqueux.

Le polymère Atoll XWP présente une très grande surface spécifique sur une structure PSDVB large pore. Ces spécificités lui confèrent l'avantage de pouvoir purifier des substances plus lourdes (supérieure à 50 KD) mais aussi de petites molécules polaires.

La technologie de remplissage Interchim permet une précision des pesées automatiques à +/- 1% près.

Chaque produit fini est livré avec son certificat individuel mentionnant le numéro de fabrication et les numéros de lots de phase utilisés. La traçabilité de la production est garantie. Un certificat de pesée précisant la masse exacte dans chaque puits est également joint au produit. Le conditionnement des produits est spécialement étudié pour un stockage longue durée à l'abri de l'air et de la lumière.

Les plaques 48 puits Upti-Clean & Atoll sont réalisées en polypropylène grade médical et permettent l'utilisation d'un volume par puits maximum de 5 et 7 ml. Leur format standard (127,76 x 85,47 mm) est compatible avec tous les appareils d'extraction et de "liquid handling" de marque Advanced Chemtech, Beckman, Bodan, Gilson, Hamilton, Packard, Sagian, Tecan, Tomtec, Zinsser, Zymark.

Masse	Puits	Upti-Clean C18	Upti-Clean PH	
Plaque 48 p	uits Silice Upt	ti-Clean - Phase Invers	se	
100 mg	5 ml	C18S-100/WP50	PHS-100/WP50	
250 mg	5 ml	C18S-250/WP50	PHS-250/WP50	
500 mg	5 ml	C18S-500/WP50	PHS-500/WP50	
250 mg	7 ml	C18S-250/WP70	PHS-250/WP70	
500 mg	7 ml	C18S-500/WP70	PHS-500/WP70	
1000 mg	7 ml	C18S-1G/WP70	PHS-1G/WP70	
Plaque 48 p	uits Polymère	Atoll - Phase Inverse		
100 mg	7 ml	X-100/WP70	XWP-100/WP70	
250 mg	7 ml	X-250/WP70	XWP-250/WP70	

Tous les adsorbants inscrits dans notre guide de sélection pages A. 69 & A. 70 font l'objet d'un remplissage à façon. Les masses d'adsorbant par puits peuvent être standards ou remplies selon vos besoins.

A.95

Pour vous aider à choisir votre adsorbant, référez vous pages A. 62 à A. 70 ou contactez notre service technique.

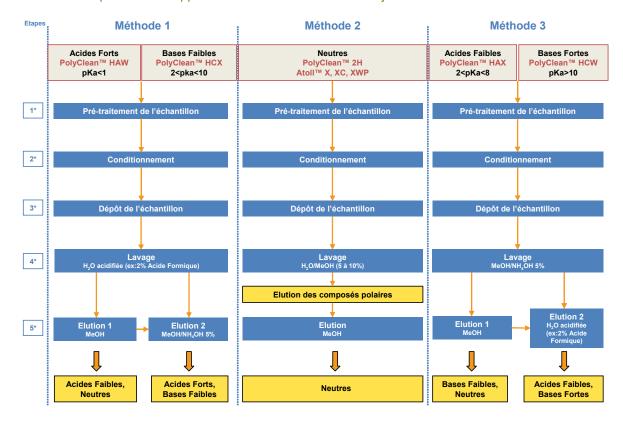
Plaques 48 puits Upti-clean et Atoll™

Plaque 48 puits PP 5 ml Frittés 20 µm PE

Masse	Puits	Upti-Clean SI	Upti-Clean NH2					
Plaque 48 puits	Silice Upti-C	lean - Phase Normal	e					
100 mg	5 ml	SIS-100/WP50	NH2S-100/WP50					
250 mg	5 ml	SIS-250/WP50	NH2S-250/WP50					
500 mg	5 ml	SIS-500/WP50	NH2S-500/WP50					
250 mg	7 ml	SIS-250/WP70	NH2S-250/WP70					
500 mg	7 ml	SIS-500/WP70	NH2S-500/WP70					
1000 mg	7 ml	SIS-1G/WP70	NH2S-1G/WP70					
Masse	Puits	Upti-Clean SCX	Upti-Clean WCX	Upti-Clean SAX				
Plaque 48 puits	Plaque 48 puits Silice Upti-Clean - Echange d'Ions							
100 mg	5 ml	SCX-100/WP50	WCX-100/WP50	SAX-100/WP50				
250 mg	5 ml	SCX-250/WP50	WCX-250/WP50	SAX-250/WP50				
500 mg	5 ml	SCX-500/WP50	WCX-500/WP50	SAX-500/WP50				
250 mg	7 ml	SCX-250/WP70	WCX-250/WP70	SAX-250/WP70				
500 mg	7 ml	SCX-500/WP70	WCX-500/WP70	SAX-500/WP70				
1000	7	00V 40/MD70	WOV 40/MD70	0 A V 4 O // M/D70				
1000 mg	7 ml	SCX-1G/WP70	WCX-1G/WP70	SAX-1G/WP70				
Masse	Puits	Alumine Acide	Alumine Basique	Alumine Neutre				
Masse Plaque 48 puits	Puits s Upti-Clean -	Alumine Acide Série Spéciale	Alumine Basique	Alumine Neutre				
Masse Plaque 48 puits 100 mg	Puits s Upti-Clean - 5 ml	Alumine Acide Série Spéciale ALA-100/WP50	Alumine Basique ALB-100/WP50	Alumine Neutre ALN-100/WP50				
Masse Plaque 48 puits 100 mg 250 mg	Puits 5 Upti-Clean - 5 ml	Alumine Acide Série Spéciale ALA-100/WP50 ALA-250/WP50	Alumine Basique ALB-100/WP50 ALB-250/WP50	Alumine Neutre ALN-100/WP50 ALN-250/WP50				
Masse Plaque 48 puits 100 mg 250 mg 500 mg	Puits 5 Upti-Clean - 5 ml 5 ml	Alumine Acide Série Spéciale ALA-100/WP50 ALA-250/WP50 ALA-500/WP50	Alumine Basique ALB-100/WP50 ALB-250/WP50 ALB-500/WP50	ALN-100/WP50 ALN-250/WP50 ALN-500/WP50				
Masse Plaque 48 puits 100 mg 250 mg 500 mg 250 mg	Puits s Upti-Clean - 5 ml 5 ml 5 ml 7 ml	Alumine Acide Série Spéciale ALA-100/WP50 ALA-250/WP50 ALA-500/WP50 ALA-250/WP70	Alumine Basique ALB-100/WP50 ALB-250/WP50 ALB-500/WP50 ALB-250/WP70	ALN-100/WP50 ALN-250/WP50 ALN-500/WP50 ALN-250/WP70				
Masse Plaque 48 puits 100 mg 250 mg 500 mg 250 mg 500 mg	Puits s Upti-Clean - 5 ml 5 ml 5 ml 7 ml 7 ml	Alumine Acide Série Spéciale ALA-100/WP50 ALA-250/WP50 ALA-500/WP50 ALA-250/WP70 ALA-500/WP70	Alumine Basique ALB-100/WP50 ALB-250/WP50 ALB-500/WP50 ALB-250/WP70 ALB-500/WP70	ALN-100/WP50 ALN-250/WP50 ALN-500/WP50 ALN-250/WP70 ALN-250/WP70				
Masse Plaque 48 puits 100 mg 250 mg 500 mg 250 mg	Puits s Upti-Clean - 5 ml 5 ml 5 ml 7 ml	Alumine Acide Série Spéciale ALA-100/WP50 ALA-250/WP50 ALA-500/WP50 ALA-250/WP70	Alumine Basique ALB-100/WP50 ALB-250/WP50 ALB-500/WP50 ALB-250/WP70	ALN-100/WP50 ALN-250/WP50 ALN-500/WP50 ALN-250/WP70				
Masse Plaque 48 puits 100 mg 250 mg 500 mg 250 mg 500 mg	Puits s Upti-Clean - 5 ml 5 ml 5 ml 7 ml 7 ml	Alumine Acide Série Spéciale ALA-100/WP50 ALA-250/WP50 ALA-500/WP50 ALA-250/WP70 ALA-500/WP70	Alumine Basique ALB-100/WP50 ALB-250/WP50 ALB-500/WP50 ALB-250/WP70 ALB-500/WP70	ALN-100/WP50 ALN-250/WP50 ALN-500/WP50 ALN-250/WP70 ALN-250/WP70				
Masse Plaque 48 puits 100 mg 250 mg 500 mg 250 mg 500 mg 1000 mg	Puits s Upti-Clean - 5 ml 5 ml 5 ml 7 ml 7 ml 7 ml	Alumine Acide Série Spéciale ALA-100/WP50 ALA-250/WP50 ALA-500/WP50 ALA-250/WP70 ALA-500/WP70 ALA-1G/WP70	Alumine Basique ALB-100/WP50 ALB-250/WP50 ALB-500/WP50 ALB-250/WP70 ALB-106/WP70 ALB-106/WP70	ALN-100/WP50 ALN-250/WP50 ALN-500/WP50 ALN-250/WP70 ALN-250/WP70				
Masse Plaque 48 puits 100 mg 250 mg 500 mg 250 mg 500 mg 1000 mg Masse	Puits s Upti-Clean - 5 ml 5 ml 5 ml 7 ml 7 ml 7 ml Puits	Alumine Acide Série Spéciale ALA-100/WP50 ALA-250/WP50 ALA-500/WP50 ALA-250/WP70 ALA-500/WP70 ALA-1G/WP70 Florisil FL-100/WP50 FL-250/WP50	Alumine Basique ALB-100/WP50 ALB-250/WP50 ALB-500/WP70 ALB-500/WP70 ALB-1G/WP70 Polyamide P6-100/WP50 P6-250/WP50	ALN-100/WP50 ALN-250/WP50 ALN-500/WP50 ALN-250/WP70 ALN-250/WP70				
Masse Plaque 48 puits 100 mg 250 mg 500 mg 250 mg 500 mg 1000 mg Masse 100 mg	Puits 5 Upti-Clean - 5 ml 5 ml 7 ml 7 ml 7 ml Puits 5 ml	Alumine Acide Série Spéciale ALA-100/WP50 ALA-250/WP50 ALA-500/WP50 ALA-250/WP70 ALA-500/WP70 ALA-1G/WP70 Florisil FL-100/WP50	Alumine Basique ALB-100/WP50 ALB-250/WP50 ALB-500/WP70 ALB-500/WP70 ALB-1G/WP70 Polyamide P6-100/WP50	ALN-100/WP50 ALN-250/WP50 ALN-500/WP50 ALN-250/WP70 ALN-250/WP70				
Masse Plaque 48 puits 100 mg 250 mg 500 mg 250 mg 500 mg 1000 mg Masse 100 mg 250 mg	Puits 5 Upti-Clean - 5 ml 5 ml 7 ml 7 ml 7 ml 7 ml Puits 5 ml 5 ml	Alumine Acide Série Spéciale ALA-100/WP50 ALA-250/WP50 ALA-500/WP50 ALA-250/WP70 ALA-500/WP70 ALA-1G/WP70 Florisil FL-100/WP50 FL-250/WP50	Alumine Basique ALB-100/WP50 ALB-250/WP50 ALB-500/WP70 ALB-500/WP70 ALB-1G/WP70 Polyamide P6-100/WP50 P6-250/WP50	ALN-100/WP50 ALN-250/WP50 ALN-500/WP50 ALN-250/WP70 ALN-250/WP70				
Masse Plaque 48 puits 100 mg 250 mg 500 mg 500 mg 1000 mg Masse 100 mg 250 mg 500 mg	Puits 5 Upti-Clean - 5 ml 5 ml 7 ml 7 ml 7 ml Puits 5 ml 5 ml 5 ml 5 ml	Alumine Acide Série Spéciale ALA-100/WP50 ALA-250/WP50 ALA-500/WP50 ALA-250/WP70 ALA-500/WP70 ALA-1G/WP70 Florisil FL-100/WP50 FL-250/WP50 FL-500/WP50	Alumine Basique ALB-100/WP50 ALB-250/WP50 ALB-500/WP70 ALB-500/WP70 ALB-1G/WP70 Polyamide P6-100/WP50 P6-250/WP50 P6-500/WP50	ALN-100/WP50 ALN-250/WP50 ALN-500/WP50 ALN-250/WP70 ALN-250/WP70				

Kit de développement de méthode SPE

Pour développer une méthode SPE robuste, reproductible et répétable, il est fondamental de choisir au mieux : Le type d'adsorbant (silices ou polymères), la nature de l'adsorbant, la masse d'adsorbant, le volume du contenant


Ces quatre paramètres sont essentiels pour obtenir :

Une sélectivité de purification intrinsèque à l'échantillon, une capacité de charge nécessaire et suffisante, un facteur de pré-concentration important, un rendement d'extraction optimum

Mettre en oeuvre une purification SPE nécessite un minimum de connaissances sur la matrice, les impuretés, les analytes à extraire qui seront par la suite analysés. Les kits de développement de méthodes sont des outils performants et pertinents qui permettent d'apprécier rapidement le type d'adsorbant à utiliser ainsi que la sélectivité qu'il apporte pour réaliser vos extractions.

Pour plus d'informations, notre service s'engage à vous apporter le meilleur service ainsi que des solutions individualisées.

Protocole indicatif pour le développement de méthodes SPE sur Polymère

1* - Pré-traitement de l'échantillon :

Différents protocoles peuvent être nécessaires avant de déposer l'échantillon sur une colonne SPE (Filtration, Extraction Liquide/Liquide, Extraction avec un appareillage de type Soxhlet. Ces étapes dépendent de la nature de l'échantillon (principalement solide ou liquide).

2* - Conditionnement :

On utilise principalement des solvants organiques de type Methanol, Acétonitrile, Dichlorométhane. Pour les échantillons aqueux, une deuxième étape de conditionnement avec de l'eau peut s'avérer nécessaire.

3* - Dépôt de l'échantillon.

4* - Lavage :

Le lavage élimine les composés interférents de la matrice qui auraient une légère affinité avec la phase stationnaire de la colonne SPE.

- Un lavage légèrement acide élimine les acides faibles présents dans le milieu.
- Un lavage légèrement basique élimine les bases faibles présentes dans le milieu.

5* - Elution :

Les composés d'intérêt sont désorbés de la phase stationnaire.

- Un solvant organique (Methanol, Acétonitrile, Dichlorométhane) est généralement utilisé pour l'élution des composés par ordre de polarité décroissante (ici phase inverse).
- En échange d'ions il faut se placer à un pH correspondant à la zone dans laquelle l'analyte est sous forme neutre.

Extraction sur phase solide

Kit de développement de méthode SPE

Pour plus d'informations sur la nature des adsorbants, consulter le guide de sélection pages A. 69 & A. 70.

Extraction et Pré-concentration de composés Acides, Basiques & Neutres

Ces kits se composent des adsorbants suivants :

- Polymère Atoll 30XC
- Polymère PolyClean 302H
- Polymère PolyClean 30HCX
- Polymère PolyClean 30HCW
- Polymère PolyClean 30HAX
- Polymère PolyClean 30HAW

Description	Réf.	Qté
Kit SPE 30 mg / 1 ml	SPE-D142	6 x 10 u
Kit SPE 60 mg / 3 ml	SPE-D143	6 x 10 u
Kit SPE 100 mg / 3 ml	SPE-D144	6 x 10 u

Extraction et Pré-concentration de composés Acides, Basiques & Neutres dans les milieux biologiques

Ces kits se composent des adsorbants suivants :

- Silice Upti-Clean WC4
- Polymère Atoll XWP
- Polymère BioP 30P
- Polymère BioP 30CX
- Polymère BioP 30CW
- Polymère BioP 30AX

Description	Réf.	Qté
Kit SPE 100 mg / 1 ml	SPE-D145	6 x 10 u

Pré-concentration d'analytes hydrophobes dans des matrices aqueuses

Ces kits se composent des adsorbants suivants :

- Silice Recovery C18
- Silice Upti-Clean C18-S
- Polymère Atoll XC
- Polymère PolyClean 2H
- Polymère Atoll X

Description	Réf.	Qté
Kit SPE 200 mg / 6 ml	SPE-D137	5 x 10 u
Kit SPE 200 mg / 3 ml	SPE-D138	5 x 10 u

Pré-concentration d'analytes hydrophiles

Ces kits se composent des adsorbants suivants :

- Silice vierge Upti-Clean
- Silice Upti-Clean NH2
- Silice Upti-Clean CN

Description	Réf.	Qté
Kit SPE 500 mg / 6 ml	SPE-D128	3 x 10 u
Kit SPE 500 mg / 3 ml	SPE-D129	3 x 10 u

Tout kit de développement peut être réalisé à façon. Nous interroger.

Kit de développement de méthode SPE

Elimination d'impuretés polaires dans des matrices aqueuses et organiques

Ces kits se composent des adsorbants suivants :

- Silice vierge Upti-Clean
- Silice Upti-Clean NH2
- Silice Upti-Clean Florisil

Description	Réf.	Qté
Kit SPE 500 mg / 6 ml	SPE-D130	3 x 10 u
Kit SPE 500 mg / 3 ml	SPE-D131	3 x 10 u

Extraction de composes Acides, Basiques ou Neutres dans des matrices aqueuses ou organiques

Ce kit se compose des adsorbants suivants :

- Polymère Atoll XC
- Polymère PolyClean 2H 30µm
- Polymère PolyClean 2H 60µm
- Polymères Atoll XWP
- Polymères Atoll X

Description	Réf.	Qté
Kit SPE 100 mg / 3 ml	SPE-D139	5 x 10 u

Extraction d'acides faibles et de bases fortes dans des matrices aqueuses

Ce kit se compose des adsorbants suivants :

- Silice Upti-Clean WCX
- Silice Upti-Clean MM2
- Silice Upti-Clean SAX
- Silice Upti-Clean MM3

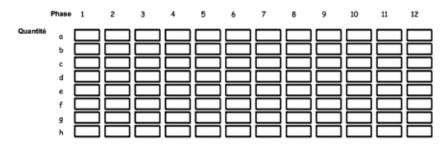
Description	Réf.	Qté
Kit SPE 500 mg / 6 ml	SPE-D133	4 x 10 u

Extraction des bases faibles dans des matrices aqueuses

Ce kit se compose des adsorbants suivants :

- Silice Upti-Clean SCX
- Silice Upti-Clean MM1

Description	Réf.	Qté
Kit SPE 500 mg / 6 ml	SPE-D134	2 x 10 u

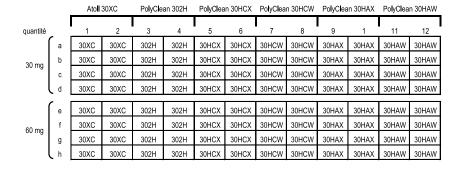

Méthode générique SPE disponible sur demande. Pour plus d'information, contacter notre service technique

Plaque de développement 96 puits

Kit de développement 96 puits "custom"

Développer et optimiser votre technique de traitement d'échantillons sur plaque 96 puits devient plus simple et rapide grâce à ce kit.

Vous pouvez purifier, pré-concentrer des analytes ou seulement éliminer les impuretés.


Pour cela, il vous suffit de :

- Choisir le ou les adsorbant(s) à tester (voir notre guide de sélection)
- Définir la ou les masses d'adsorbant(s) par puits (de 20 à 200 mg en fonction de la densité de l'adsorbant)

Communiquez nous votre descriptif par téléphone, fax ou email en vous aidant du formulaire spécifique disponible sur demande.

Nous vous enverrons une offre de prix sous 24-48 heures. Cette plaque remplie selon vos besoins est livrée avec un certificat de pesée précisant la masse exacte dans chaque puits. Pour vous aider dans votre choix, notre service technique reste à votre disposition.

Développement de méthode pour l'extraction de composés Acides, Basiques & Neutres

Description	Réf.
Plaque 96 puits de développement pour l'extraction de composées acides,	96WP-D110470

Plaque 96 puits PP 2 ml Frittés 20 µm PE

A.100

basiques & neutres

Développement de méthode, screening sur Polymères

					Quanti	té 30mg						_	
1	2	3	4	5	6	7	8	9	1	11	12		Phase
30H	CX 30HCX	30HCX	30HCX	30HCX	30HCX	30HCX	30HCX	30HCX	30HCX	30HCX	30HCX	а	PolyClean 30HCX
30H0	CW 30HCW	30HCW	30HCW	30HCW	30HCW	30HCW	30HCW	30HCW	30HCW	30HCW	30HCW	b	PolyClean 30HCV
30H.	AX 30HAX	30HAX	30HAX	30HAX	30HAX	30HAX	30HAX	30HAX	30HAX	30HAX	30HAX	С	PolyClean 30HAX
30H	AW 30HAW	30HAW	30HAW	30HAW	30HAW	30HAW	30HAW	30HAW	30HAW	30HAW	30HAW	d	PolyClean 30HAV
302	Н 302Н	302H	302H	302H	302H	302H	302H	302H	302H	302H	302H	е	PolyClean 302H
Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	f	Ato ll X
30×	C 30XC	30XC	30XC	30XC	30XC	30XC	30XC	30XC	30XC	30XC	30XC	g	Atoll 30XC
XW	P XWP	XWP	XWP	XWP	XWP	XWP	XWP	XWP	XWP	XWP	XWP	h	Atoll XWP

Description

Plaque 96 puits de développement, screening sur Polymères

96WP-D110480

Réf.

Développement de méthode pour l'extraction de BioMolécules

		Ato	XWP	Upti-Cle	an WC4	BioP 30P		BioP 30P BioP 30CX		BioP 30CW		BioP 30AX	
quantité		1	2	3	4	5	6	7	8	9	1	11	12
	a	XWP	XWP	WC4	WC4	30P	30P	30CX	30CX	30CW	30CW	30AX	30AX
	b	XWP	XWP	WC4	WC4	30P	30P	30CX	30CX	30CW	30CW	30AX	30AX
	С	XWP	XWP	WC4	WC4	30P	30P	30CX	30CX	30CW	30CW	30AX	30AX
	d	XWP	XWP	WC4	WC4	30P	30P	30CX	30CX	30CW	30CW	30AX	30AX
30mg													
	е	XWP	XWP	WC4	WC4	30P	30P	30CX	30CX	30CW	30CW	30AX	30AX
	f	XWP	XWP	WC4	WC4	30P	30P	30CX	30CX	30CW	30CW	30AX	30AX
	g	XWP	XWP	WC4	WC4	30P	30P	30CX	30CX	30CW	30CW	30AX	30AX
	h	XWP	XWP	WC4	WC4	30P	30P	30CX	30CX	30CW	30CW	30AX	30AX

 Description
 Réf.

 Plaque 96 puits de développement pour l'extraction de BioMolécules
 96WP-D110471

оош З

A.102

Colonnes et Plaques "Custom" Interchim

Nous vous proposons de fabriquer des colonnes et plaques multi-puits suivant vos spécifications. Pour cela il suffit de nous faire parvenir une demande à :

interchrom@interchim.com customservices@mail.interchim.fr Fax: 04 70 03 82 60 - Tél: 04 70 03 73 09

en précisant les points suivants :

- le type d'adsorbant désiré
- la masse d'adsorbant
- la nature de la colonne, de la plaque ou du contenant
- le volume de la colonne, des puits de la plaque ou du contenant
- la nature et la porosité des frittés
- la quantité des colonnes désirées

Un de nos spécialistes vous contactera sous 48 heures pour valider la faisabilité du projet. Un contrat de confidentialité des données pourra être signé entre les deux parties.

Type d'adsorbant

Il peut être :

- un adsorbant fabriqué par vos soins. Dans ce cas, il vous faut nous préciser sa nature et ses caractéristiques physiques ainsi que sa fiche de sécurité.
- un adsorbant commercialisé et/ou fabriqué par une autre société
- un adsorbant Interchim

Masse d'adsorbant

Elle peut être comprise entre 15 mg et 70 g (fonction du volume de la colonne ou de la plaque choisie). La précision de nos pesées peut aller jusqu'à 1% près avec la possibilité d'obtenir un certificat de pesée pour les plaques 96 et 48 puits.

Nature de la colonne, de la plaque ou du contenant

Trois types de colonnes proposés :

- Réservoir droit en polypropylène
- Réservoir large capacité (LRC) en polypropylène
- Réservoir droit en verre

Deux types de plaques proposés :

- Plaques 96 puits
- Plagues 48 puits

Nous pouvons remplir tout autre type de contenant s'il est compatible avec nos systèmes de remplissage.

Volume de la colonne, de la plaque ou du contenant

- 1 3 6 15 25 75 150 ml pour les tubes droits en polypropylène
- 15 ml pour les réservoirs LRC en polypropylène
- 6 ml pour les tubes droits en verre
- 2 ml pour les plaques 96 puits en polypropylène
- 5 ou 7 ml pour les plaques 48 puits en polypropylène

Nature et porosité des frittés

- Polyéthylène, Teflon® ou fibre de verre pour les tubes droits en polypropylène et les réservoirs LRC
- ▶ Teflon® pour les tubes droits en verre
- Polyéthylène pour les plaques 48 & 96 puits

Kit SPE Interchim pour applications spécifiques

Extraction de HAP dans les eaux ou les sols

Développés pour l'extraction d'hydrocarbures aromatiques polycycliques (HAP) dans des matrices eaux ou sols, les kits d'application SPE Interchim permettent l'adsorption d'impuretés polaires de même que le piégeage des traces d'eau contenues dans la matrice. Les composés d'intérêt n'ont aucune interaction avec les adsorbants et sont généralement analysés par chromatographie en phase gazeuse.

Les contenants disponibles peuvent être en polypropylène ou en verre avec des frittés en polyéthylène ou en PTFE. Un contenant verre avec des frittés PTFE garantit la récupération de fractions de solvant dépourvues d'extractibles.

Une première étape de traitement est nécessaire: les HAP sont extraits par extraction liquide/liquide ou solide/liquide (PSE, soxhlet...)

Description	Réf.	Qté
Kit SPE pour l'extraction de HAP dans les eaux ou les sols - 4 g/6 mL - colonnes PP - frittés PE	SPE-SA2	30 u
Kit SPE pour l'extraction de HAP dans les eaux ou les sols - 4 g/6 mL - colonnes verre - frittés PTFE	SPE-SA3	30 u

Extraction de HAP dans les eaux contenant des acides humiques

Développés pour l'extraction d'hydrocarbures aromatiques polycycliques (HAP) dans les eaux contenant des acides humiques, les kits d'application SPE Interchim permettent la préconcentration des HAP, tout en retenant fortement les acides humiques.

Le contenant disponible est le polypropylène avec des frittés en polyéthylène.

Description	Réf.	Qté
Kit SPE pour l'extraction de HAP dans les eaux contenant des acides	SPE-SA4	30 u
humiques - 1.5 g/6 mL - colonnes PP - frittés PE		

Protocole indicatif:

- Conditionnement de la colonne SPE : 5 mL MeOH puis 7 mL DI H2O/EtOH (9/1 v/v)
- Préparation de l'échantillon : 500 mL (échantillon) + 20/30 mL EtOH
- Lavage 1 : 2 mL MeOH/H2O (100 mM acide acétique) 5/95 v/v
- Lavage 2 : 1 à 3 mL DI H2O/EtOH 9/1 v/v
- Séchage : 15 min
- ▶ Elution : 5 mL Dichloromethane

Extraction de HAP dans les sols et les huiles

Développés pour l'extraction d'hydrocarbures aromatiques polycycliques (HAP) dans les sols et huiles, les kits d'application SPE Interchim permettent l'adsorption des impuretés polaires, ainsi que l'adsorption sélective des HAP.

Les contenants disponibles peuvent être en polypropylène ou en verre avec des frittés en polyéthylène ou en PTFE. Un contenant verre avec des frittés PTFE garantit la récupération de fractions de solvant dépourvues d'extractibles. Protocole indicatif disponible sur demande.

Description	Réf.	Qté
Kit SPE pour l'extraction de HAP dans les sols et les huiles - 1,5 g/6 mL - colonnes PP - frittés PE	SPE-SA5	30 u
Kit SPE pour l'extraction de HAP dans les sols et les huiles - 1,5 g/6 mL - colonnes verre - frittés PTFE	SPE-SA6	30 u

Publications

PAH & Aliphatic hydrocarbons (C12 up to C41) from petroleum residues

Publication Name: Roberto Alzaga and all, Environmental Chemistry Department, IIQAB-CSIC, Jordi Girona 18–26, E-08034 Barcelona, Spain; Journal of Chromatography A, 1025 (2004) 133–138; Fast solid-phase extraction - gas chromatography - mass spectrometry procedure for oil fingerprinting Application to the Prestige oil spill.

*****≅interchin

A.103

Colonnes Upti-Clean® spécifiques

Extraction de PCB dans les huiles

Les kits d'application SPE Interchim sont utilisés pour le traitement d'échantillons organiques et permettent l'élimination d'impuretés susceptibles d'interférer lors de l'analyse par chromatographie en phase gazeuse avec les **polychlorobiphényles** (PCB).

Description	Réf.	Qté
Kit SPE pour l'extraction de PCB dans les huiles - 1 g/3 mL - colonnes PP - frittés PE	SPE-SA12	50 u
Kit SPE pour l'extraction de PCB dans les huiles - 1 g/6 mL - colonnes PP - frittés PE	SPE-SA13	30 u

Applications: Norme EN61619

Extraction de PCB dans les huiles

Les colonnes Upti-Clean CT-20 sont utilisées pour le traitement d'échantillons organiques et permettent l'élimination d'impuretés susceptibles d'interférer lors d'analyse par chromatographie en phase gazeuse avec les **polychlorobiphényles** (PCB). Ces colonnes ont subi un traitement acide qui rend le nettoyage de certains échantillons plus efficace notamment par oxydation de certains types d'impuretés.

Applications: Norme EN61619

Description	Réf.	Qté
Colonnes SPE Custom CT-20 - 3 ml	CT-20F	50 u
Colonnes SPE Custom CT-20 - 6 ml	CT-20G	30 u

Extraction des HAP & PCB dans les boues

Les colonnes Upti-Clean CT-33 sont utilisées pour le traitement d'échantillon organiques. Elles permettent l'élimination du soufre ou des composés soufrés. Les impuretés polaires sont également retenues sur le support. Le sulfate de sodium sert d'agent desséchant pour piéger les traces d'eau. Les **hydrocarbures aromatiques polycycliques** (HAP) et **polychlorobiphényles** (PCB) peuvent être analyser par chromatographie liquide ou gazeuse.

Applications: Norme XP X33-012

Description	Réf.	Qté
Colonnes SPE Custom CT-33 - 3 ml	CT-33A	50 u
Colonnes SPE Custom CT-33 - 6 ml	CT-33B	30 u

A.104

Pour plus d'informations sur ces produits spécifiques, contactez notre service technique

Colonnes Upti-Clean® spécifiques

Extraction PBDE dans des sédiments, dans des boues d'épuration

Les colonnes Upti-Clean CT-35 sont utilisées pour le traitement d'échantillon organiques et permettent l'élimination d'impuretés susceptibles d'interférer lors d'analyse par chromatographie en phase gazeuse avec des éthers diphényliques polybromés (PBDE).

Applications: Norme NF EN ISO 22032

Description	Réf.	Qté
Colonnes SPE Custom CT-35 - 6 ml	CT-35A	50 u

Extraction & purification des PCDD / PCDF & PCB de type dioxine

Les produits d'extraction et de purification nécessaires à l'application de la norme NF EN 1948 sont disponibles sur demande (utilisés lors du procédé d'analyse des Polychlorodibenzo-p-dioxine (PCDD), polychlorodibenzo-furanes (PCDF) et polychlorobiphényles (PCB) de type dioxine).

Pour cela, il vous suffit de nous faire parvenir votre demande à : interchrom@interchim.com

Extraction de drogues basiques dans les fluides biologiques*

Description	Réf.	Qté
Extraction de drogues basiques dans les fluides biologiques	SPE-SA1	50 u

Extraction de Huiles et Graisses dans les matrices aqueuses* (EPA Method 1664)

Description	Réf.	Qté
Extraction de Huiles et Graisses dans les matrices aqueuses (EPA Method 1664) (format des colonnes SPE : 1 g/6 mL)	SPE-SA7	50 u
Extraction de Huiles et Graisses dans les matrices aqueuses (EPA Method 1664) (format des colonnes SPE : 500 mg/3 mL)	SPE-SA8	50 u

Extraction du Bisphenol A (BPA) dans les matrices aqueuses*

Description	Réf.	Qté
Extraction du Bisphenol A (BPA) dans les matrices aqueuses	SPE-SA9	30 u

Extraction de Pesticides et Herbicides dans les matrices aqueuses*

Description	Réf.	Qté
Extraction de Pesticides et Herbicides dans les matrices aqueuses	SPE-SA10	50 u

Extraction de Stéroïdes dans les fluides biologiques*

Description	Réf.	Qté
Extraction de Stéroïdes dans les fluides biologiques	SPE-SA11	50 u

Extraction de composés organiques semi-volatiles (SVOCs) dans l'eau (EPA 525)*

Description	Réf.	Qté
Extraction de composés organiques semi-volatiles (SVOCs) dans l'eau (EPA 525)	SPE-SA14	30 u

^{*} Protocole disponible sur demande

Colonnes multicouches et adsorbants en vrac spécifiques disponible sur demande.

A.105

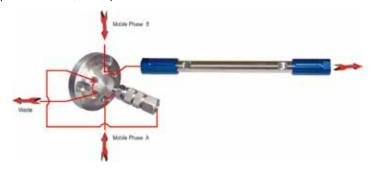
Extraction "on-line"

Upti-trap™

Le Modulo-cart Upti-trap™ permet l'extraction et/ou la pré-concentration d'échantillons avant analyses HPLC sans colmater ou endommager la colonne analytique.

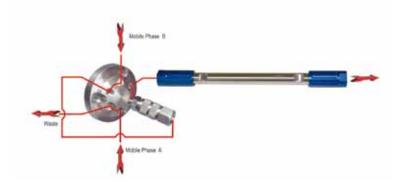
Les Upti-Trap™ sont disponibles dans deux dimensions :

- 15 x 4,0 mm
- 15 x 2,1 mm


La capacité de charge pour un Upti-trap^{\mathbb{T}} 15 x 4,0 mm est de l'ordre de 8 à 12 mg. Celle d'un Upti-trap^{\mathbb{T}} 15 x 2,1 mm est d'environ 1,5 à 3 mg.

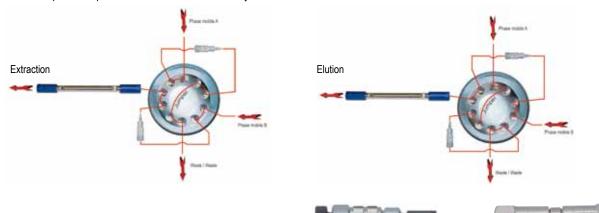
Cette technique s'applique très bien à l'analyse de fluides biologiques où la recherche de candidats médicaments, drogues et leurs métabolites doit être rapide et efficace. C'est aussi un excellent outil de pré-concentration pour les échantillons environnementaux (analyse d'hydrocarbures poly-aromatiques (HAP), polychlorobiphényls (PCB), phényl-urées, triazines, carbamates, ...)

L'extraction on-Line avec le Modulo-cart Upti-trap représente un réel gain de temps comparé à une méthode off-line tout en conservant une grande sensibilité. C'est une méthode reproductible et répétable qui peut s'automatiser très facilement.


1- Mode extraction

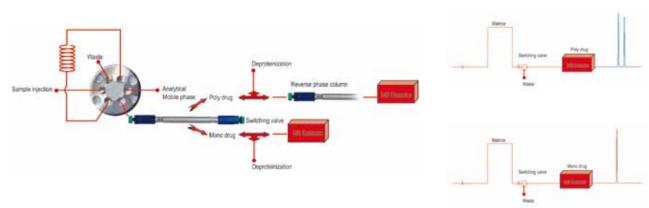
Le ou les composés d'intérêt sont bloqués sur l'adsorbant pendant que le reste est élué vers la poubelle grâce au solvant de lavage (phase mobile A). Deux pompes HPLC sont nécessaires, une pour l'extraction. l'autre pour l'élution.

2- Mode élution


La phase mobile de la seconde pompe (phase mobile B) élue le ou les composés d'intérêt qui sont transférés dans la colonne HPLC.

A.106

L'emploi d'une vanne 10 voies / 2 positions permet d'augmenter la productivité. Un échantillon est extrait pendant qu'un second est en cours d'analyse.



PuriFlash® RP.AQ

Injection directe de matrice complexe

La phase stationnaire RP.AQ permet l'injection directe de drogues dans leur matrice biologique. C'est une phase stationnaire à la fois hydrophobe et hydrophile. La matrice éluée en premier peut être éliminée grâce une vanne de sélection. La ou les drogues sont dirigées quant à elles vers le détecteur de masse ou bien d'abord vers une colonne analytique de type C18 puis vers le détecteur dans le cas de mélange de drogues.

Extraction "on-line"

BIO-Trap 500 C18, C8 et MS

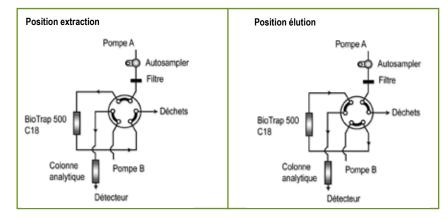
Injection directe d'échantillons plasmatiques ou de sérum

- Analyses rapides
- Injections précises
- Facilement automatisables
- Couplage MS

3 types disponibles:

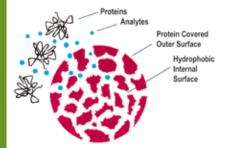
- Bio-Trap 500 C8
- Bio-Trap 500 C18 (extraction des petites drogues)
- Bio-Trap 500 MS (extraction de composés acides ou basiques pour le couplage masse)

Bio-Trap est un nouveau type de colonnes d'extraction qui permettent l'injection directe de plasma ou autres mélanges complexes sans aucun traitement préalable.


Les colonnes Bio-Trap sont remplies avec une silice sphérique totalement poreuse. La surface externe de cette silice est recouverte par une protéine humaine α_1 -AGP (résistante à de forts pourcentages de modifiants organiques) et la surface interne est recouverte de greffons C8 ou C18.

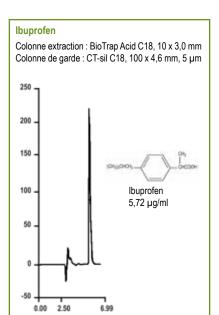
Le faible diamètre des pores interdit la contamination par les protéines plasmatiques qui sont éliminées et permet de piéger les petites molécules.

Les colonnes Bio-Trap peuvent être utilisées soit dans un système manuel, soit dans un système entièrement automatisé.


Utilisation manuelle

- Installer la colonne Bio-Trap comme une boucle d'injection sur la vanne et équilibrer la colonne avec le tampon d'extraction. Injecter l'échantillon de plasma et laver par passage de tampon pour éliminer les protéines plasmatiques. (Position extraction)
- Basculer la vanne en position "injection": l'échantillon est élué sur la colonne analytique par passage de la phase mobile. (Position élution)
- Après retour en position "charge", la colonne Bio-Trap est rééquilibrée et de nouveau prête à recevoir un échantillon de plasma. (Position extraction)

Mode automatique


L'utilisation d'une vanne 6 positions avec commande électrique, couplée à un passeur d'échantillons et une pompe délivrant le tampon d'extraction, permet d'automatiser complètement les analyses.

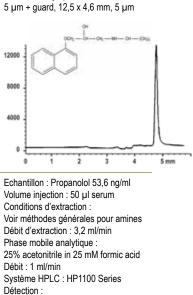
Carbamazepine / Phenytoin

Extraction "on-line"

Volume d'injection : 10 µl

Détection fluorescence : ex 225 nm, em 535 nm Extraction buffer : 0,20 M phosph. b pH 2,1 Position extraction : 2 min, 100 x 4,6 mm, 5 μ m Phase mobile : 65 % methanol in 82 mM phosph.b,

pH 6,0


Position d'élution : 2 min Débit : 1,0 ml/min

Propanolol (53,6 ng/ml) MS-detection

Colonne extraction: BioTrap 500 MS,20 x 4,0 mm Colonne analytique: Zorbax SB-CN, 150 x 4,6 mm,

HP1100 Séries LC/MSD, APCI positive à 260,3

Programme d'analyses : Temps d'extraction : 1 min Temps d'élution : 3 min Temps d'équilibrage : 2 min

Colonne e Colonne a 5 µm						
80 1		Carba 4.25µ	ımaze ıg/ml	pine	3.	_1
75 -			١	`_	Y)-	
45	\int_{L}			Phe	nytoin	
30 _	14		ı	7.25	iµg/ml	
15 _	II.	A	1	1	U	JU
-10		Ase.	Blank	plasma 15.0	19.0	
Injection v Phase mo 4% 2-prop Débit : 0,8	olume : 5 bile (extra anol in 20	action)	:		1 6,0	

ph.b.pH 2,8 (µ=0.1) Débit : 1,0 ml/min Détection : UV210 mm

Programme d'analyses :

Position	Etape	Durée
de vanne	d'analyse	
1. Extraction	Extraction échantillon	3 min
2. Elution	Transfert de l'analyte	3 min
Extraction	Analyse et équilibrage	4 min

Phase mobile analytique: 28% acetonitrile in sod.

Description	Dimensions	Réf.
BioTrap 500 MS, support + 1 cartouche	13 x 4,0 mm	39H11
BioTrap 500 MS, support + 1 cartouche	20 x 4,0 mm	39H17
BioTrap 500 MS, support + 1 cartouche	20 x 2,0 mm	39H97
BioTrap 500 MS, 2 cartouches	13 x 4,0 mm	39C11
BioTrap 500 MS, 2 cartouches	20 x 4,0 mm	39C17
BioTrap 500 MS, 2 cartouches	20 x 2,0 mm	39C97

Extraction "on-line"

HyperSep

Les colonnes d'extraction HyperSep Thermo Scientific permettent la pré-concentration et purification d'échantillons en ligne sur tous les systèmes HPLC.

4 sélectivités s'offrent à vous :

- HyperSep Retain PEP: pour l'extraction d'analytes mid-polaires à apolaires.
- HyperSep Retain CX: pour l'extraction d'analytes basiques et/ou mid-polaires.
- HyperSep Retain AX: pour l'extraction d'analytes acides et/ou mid-polaires.
- Hypercarb: pour l'extraction d'analytes mid-polaires à très polaires

Description	Qté	Retain-PEP	Retain-CX	Retain-AX	Hypercarb					
Colonnes SPE "on-line" Javelin										
10 x 2,1 mm	4 u	60310-201	60310-301	60310-401	60310-501					
10 x 3,0 mm	4 u	60310-202	60310-302	60310-402	60310-502					
Colonnes SPE "on-line" Uniguard										
10 x 2,1 mm	4 u	60311-201	60311-301	60311-401	60311-501					
10 x 3,0 mm	4 u	60311-202	60311-302	60311-402	60311-502					
Colonnes HPLC pour SPE "on-line"										
20 x 2,1 mm	4 u	60312-201	60312-301	60312-401	60312-501					
20 x 3,0 mm	4 u	60312-202	60312-302	60312-402	60312-502					

Extraction sur phase solide

Colonnes Agilent Bond Elut

Bond Elut

Tous les adsorbants Bond Elut sont strictement contrôlés par le service contrôle-qualité Agilent. Pour garantir la reproductibilité de la sélectivité de lot à lot, le processus de contrôle comprend des solutions tests pour HPLC.

Pour assurer une extraction rapide et efficace, chaque lot de colonne SPE est testé en débit. Pour une meilleure reproductibilité, les masses d'adsorbant sont pesées avec une précision extrême.

Les tubes et les frittés sont lavés et rincés soigneusement avant conditionnement pour une plus grande pureté. La méthode employée depuis 1994 permet l'obtention de colonnes et cartouches polypropylène ultrapures qui rivalisent avec la propreté du verre et du Teflon, mais avec un coût plus avantageux.

Chaque boîte de Bond Elut inclue un certificat d'analyse et un chromatogramme test.

Support: Bondesil Silice: irrégulière

Granulométrie: Standard: 40 µm; High Flow: 120 µm

Porosité: 60 Å

Surface spécifique : 500 m²/g Résistance mécanique : élevée

Résistance chimique : compatible avec la plupart des solvants aqueux et organiques

pH: 2-7

Colonnes Bond Elut Standards

Masse 50 mg 100 mg 50 mg 100 mg	Volume 1 ml 1 ml 3 ml 3 ml	Qté 100 u 100 u 50 u 50 u	Support 40 µm C18 C18 C18 C18	Réf. 12102058 12102001 12105027 12102099	Support 120 µm* C18HF C18HF	Réf. 14102058 14102001
200 mg	3 ml	50 u	C18	12102025	C18HF	14102025
500 mg 500 mg	3 ml 6 ml	50 u 30 u	C18 C18	12102028 12102052	C18HF C18HF	14102028 14102052
50 mg 100 mg 50 mg 100 mg	1 ml 1 ml 3 ml 3 ml	100 u 100 u 50 u 50 u	C8 C8 C8 C8	12102059 12102002 12105028 12102100	C8HF C8HF	14102059 14102002
200 mg 500 mg 500 mg	3 ml 3 ml 6 ml	50 u 50 u 30 u	C8 C8 C8	12102026 12102029 12102053	C8HF C8HF C8HF	14102026 14102029 14102053
50 mg 100 mg 50 mg	1 ml 1 ml 3 ml	100 u 100 u 50 u	C2 C2 C2	12102060 12102003 12105029	C2HF C2HF	14102060 14102003
200 mg 500 mg	3 ml 3 ml	50 u 50 u	C2 C2	12102027 12102030	C2HF	14102027
50 mg 100 mg 100 mg 500 mg	1 ml 1 ml 3 ml 3 ml	100 u 100 u 50 u 50 u	C1 C1 C1 C1	12102061 12102004 12102090 12102031		
50 mg 100 mg 500 mg	1 ml 1 ml 3 ml	100 u 100 u 50 u	C18OH C18OH C18OH	12102065 12102020 12102046	C18OHHF C18OHHF C18OHHF	14102065 14102020 14102046
50 mg 100 mg 500 mg	1 ml 1 ml 3 ml	100 u 100 u 50 u	PH PH PH	12102062 12102005 12102032	PHHF PHHF PHHF	14102062 14102005 14102032

Réservoir polypropylène grade médical Frittés Polyéthylène de 20 µm

* Les supports HF évitent le colmatage avec les échantillons visqueux comme l'urine de cheval, les tissus...

A.111

Préparation d'échantillons

A.112

∦interchim

§

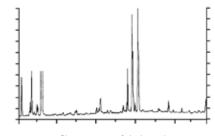
Colonnes Agilent Bond Elut

Masse 50 mg 100 mg 500 mg	Volume 1 ml 1 ml 3 ml	Qté 100 u 100 u 50 u	Support 40 µm CH CH CH	Réf. 12102063 12102006 12102033	Support 120 µm*	Réf.
50 mg 100 mg 500 mg	1 ml 1 ml 3 ml	100 u 100 u 50 u	CNE CNE CNE	12102064 12102007 12102034	CNEHF	14102064 14102034
50 mg 100 mg 500 mg	1 ml 1 ml 3 ml	100 u 100 u 50 u	CNU CNU CNU	12102066 12102008 12102035	CNUHF CNUHF	14102008 14102035
50 mg 100 mg 500 mg	1 ml 1 ml 3 ml	100 u 100 u 50 u	20H 20H 20H	12102067 12102009 12102036		
50 mg 100 mg 200 mg	1 ml 1 ml 3 ml	100 u 100 u 50 u	NH2 NH2 NH2	12102076 12102014 12102089	NH2HF NH2HF	14102076 14102014
500 mg 50 mg 100 mg 500 mg	3 ml 1 ml 1 ml 3 ml	50 u 100 u 100 u 50 u	NH2 Si Si Si	12102041 12102068 12102010 12102037	NH2HF SiHF SiHF	14102041 14102068 14102010 14102037
50 mg 100 mg 500 mg	1 ml 1 ml 3 ml	100 u 100 u 50 u	Al-A Al-A Al-A	12102069 12102021 12102047		
50 mg 100 mg 500 mg	1 ml 1 ml 3 ml	100 u 100 u 50 u	Al-B Al-B Al-B	12102070 12102022 12102048		
50 mg 100 mg 500 mg	1 ml 1 ml 3 ml	100 u 100 u 50 u	Al-N Al-N Al-N	12102071 12102023 12102049		
50 mg 100 mg 500 mg	1 ml 1 ml 3 ml	100 u 100 u 50 u	FI FI	12102072 12102024 12102050		
50 mg 100 mg 100 mg 500 mg	1 ml 1 ml 3 ml 3 ml	100 u 100 u 50 u 50 u	CBA CBA CBA	12102073 12102011 12102097 12102038	CBAHF CBAHF	14102073 14102011 14102038
50 mg 100 mg 200 mg 500 mg	1 ml 1 ml 3 ml 3 ml	100 u 100 u 50 u 50 u	PRS PRS PRS PRS	12102074 12102012 12102094 12102039	ОБИП	14102000
100 mg 500 mg 50 mg 100 mg	1 ml 3 ml 1 ml 3 ml	100 u 50 u 100 u 50 u	SCX SCX SCX SCX	12102013 12102040 12102075 12102098	SCXHF SCXHF	14102013 14102040 14102075
50 mg 100 mg 500 mg	1 ml 1 ml 3 ml	100 u 100 u 50 u	PSA PSA PSA	12102077 12102015 12102042	PSAHF PSAHF	14102077
50 mg 100 mg 500 mg	1 ml 1 ml 3 ml	100 u 100 u 50 u	DEA DEA DEA	12102078 12102016 12102043	DEAHF DEAHF DEAHF	14102078 14102016 14102043
50 mg 100 mg 500 mg	1 ml 1 ml 3 ml	100 u 100 u 50 u	SAX SAX SAX	12102079 12102017 12102044	SAXHF SAXHF	14102079 14102017
1000 mg	3 ml	50 u	SAX	12102087	SAXHF	14102044

^{*} Les supports HF évitent le colmatage avec les échantillons visqueux comme l'urine de cheval, les tissus...

Colonnes Agilent Bond Elut Certify®

Bond Elut Certify®


Les colonnes Bond Elut Certify® sont doublement greffées. Elles possèdent un greffon hydrophobe C8 et un greffon échangeur de cations fort acide benzènesulfonique (SCX). Les interactions multiples créées par ce double greffage augmentent l'affinité que peut avoir le composé d'intérêt pour le support fixe.

De nombreux lavages sont donc possibles, l'élimination des interférants est maximale. Le composé d'intérêt est élué plus "propre", la reproductibilité et le taux de recouvrement sont améliorés. Les colonnes Certify sont très employées pour extraire les drogues basiques (cationiques) des fluides biologiques tels le plasma, le sang...

Les colonnes Certify II sont, elles, plus dédiées à l'extraction rapide des drogues acides et métabolites provenant d'urines ou autres fluides biologiques. Elles possèdent un double greffage hydrophobe C8 et échangeur d'anions fort amine quaternaire (SAX).

	Certify I	Certify II
Porosité	60 Å	60 Å
Greffage	C8 + SCX	C8 + SAX
End-capping	non	non
Taux de C	9%	8,6%
Mécanisme primaire	Apolaire/échange de cations	Apolaire/échange d'anions
Matrice classique	Fluides biologiques	Fluides biologiques

Masse	Vol.	Qté	Support 40 µm	Réf.	Support 120 µm*	Réf.
50 mg	3 ml	50 u	Certify	12105030		
130 mg	1 ml	100 u	Certify	12102083	CertifyHF	14102083
130 mg	3 ml	50 u	Certify	12102051	CertifyHF	14102051
300 mg	3 ml	50 u	Certify	12102081		
300 mg	6 ml	30 u	Certify	12102082		
500 mg	6 ml	30 u	Certify	12102093		
1000 mg	6 ml	30 u	Certify	12102085	CertifyHF	14102085
130 mg	LRC	50 u	Certify	12113050	CertifyHF	14113050
200 mg	LRC	50 u	Certify	12113054		
300 mg	LRC	50 u	Certify	12113052	CertifyHF	14113052
180 mg	3 ml	50 u			Vet CertifyHF	14103002
300 mg	3 ml	50 u			Vet CertifyHF	14102081
300 mg	6 ml	30 u			Vet CertifyHF	14102082
50 mg	3 ml	50 u	CertifyII	12105031		
200 mg	3 ml	50 u	CertifyII	12102080	CertifyIIHF	14102080
500 mg	6 ml	30 u	CertifyII	12102084	CertifyIIHF	14102084
1000 mg	6 ml	30 u	CertifyII	12102088		
75 mg	LRC	50 u	CertifyII	12113064		
100 mg	LRC	50 u	CertifyII	12113063		
200 mg	LRC	50 u	CertifyII	12113051	CertifyIIHF	14113051

Chromatogram of clenbuterol at 18 ng/ml in horse urine

^{*} Les supports HF évitent le colmatage avec les échantillons visqueux comme l'urine de cheval, les tissus...

Colonnes Agilent Bond Elut PPL et LRC

Bond Elut PPL

Les colonnes Bond Elut PPL sont remplies d'un copolymère Styrènedivinylbenzene pur. Elles permettent d'excellents taux de récupération pour l'extraction des composés polaires comme les phenols ou apolaires dans de larges volumes d'eau.

- Très grande surface spécifique : 600 m²/g
- Extraction quantitative
- Débit important

Masse	Vol.	Qté	Type	Réf.
25 mg	1 ml	100 u	PPL	12105001
50 mg	1 ml	100 u	PPL	12105002
100 mg	1 ml	100 u	PPL	12105003
100 mg	3 ml	50 u	PPL	12105004
200 mg	3 ml	50 u	PPL	12105005
500 mg	3 ml	50 u	PPL	12105006
500 mg	6 ml	30 u	PPL	12255001
1 g	6 ml	30 u	PPL	12255002

- LRC, Réservoir à Large Capacité La forme évasée des colonnes Bond Elut LRC permet de travailler avec des volumes de solvants jusqu'à 10 ml sans adjonction de réservoir supplémentaire
- LRC, compatible avec les Robots de Laboratoire Le design spécifique des colonnes Bond Elut LRC permet leur adaptation sur de nombreux types de robots de laboratoire tels BenchMate, Zymarck Autotrace, Gilson Aspec...

Masse	Qté	Vol.	Support 40 µm	Réf.	Support 120 µm*	Réf.
100 mg	50 u	10 ml	C18	12113001	C18HF	14113001
200 mg	50 u	10 ml	C18	12113024	C18HF	14113024
500 mg	50 u	10 ml	C18	12113027	C18HF	14113027
100 mg	50 u	10 ml	C8	12113002		
200 mg	50 u	10 ml	C8	12113025	C8HF	14113025
500 mg	50 u	10 ml	C8	12113028	C8HF	14113028
100 mg	50 u	10 ml	C2	12113003		
200 mg	50 u	10 ml	C2	12113026		
500 mg	50 u	10 ml	C2	12113029		
100 mg	50 u	10 ml	C1	12113004		
300 mg	50 u	10 ml	C1	12113053	C1HF	14113053
500 mg	50 u	10 ml	C1	12113030		
100 mg	50 u	10 ml	C180H	12113019	C18OHHF	14113019
500 mg	50 u	10 ml	C18OH	12113045	C18OHHF	14113045
100 mg	50 u	10 ml	PH	12113005	PHHF	14113005
500 mg	50 u	10 ml	PH	12113031	PHHF	14113031
500 mg	50 u	10 ml	СН	12113032	CHHF	14113032

.... Agilent Technologies

Colonnes Agilent Bond Elut LRC

Masse	Qté	Vol.	Support 40 µm	Réf.	Support 120 µm*	Réf.
100 mg	50 u	10 ml	CNE	12113007		
500 mg	50 u	10 ml	CNE	12113033	CNEHF	14113033
100 mg	50 u	10 ml	CNU	12113008	CNUHF	14113008
500 mg	50 u	10 ml	CNU	12113034		
100 mg	50 u	10 ml	20H	12113009		
500 mg	50 u	10 ml	20H	12113035		
100 mg	50 u	10 ml	NH2	12113014	NH2HF	14113014
500 mg	50 u	10 ml	NH2	12113040	NH2HF	14113040
100 mg	50 u	10 ml	Si	12113010	SiHF	14113010
500 mg	50 u	10 ml	Si	12113036		
100 mg	50 u	10 ml	Al-A	12113020		
500 mg	50 u	10 ml	Al-A	12113046		
100 mg	50 u	10 ml	Al-B	12113021		
500 mg	50 u	10 ml	Al-B	12113047		
100 mg	50 u	10 ml	Al-N	12113022		
500 mg	50 u	10 ml	Al-N	12113048		
100 mg	50 u	10 ml	FI	12113023		
500 mg	50 u	10 ml	FI	12113049		
100 mg	50 u	10 ml	CBA	12113011	CBAHF	14113011
500 mg	50 u	10 ml	CBA	12113037	CBAHF	14113037
100 mg	50 u	10 ml	PRS	12113012		
500 mg	50 u	10 ml	PRS	12113038		
100 mg	50 u	10 ml	SCX	12113013	SCXHF	14113013
500 mg	50 u	10 ml	SCX	12113039	SCXHF	14113039
100 mg	50 u	10 ml	PSA	12113015	PSAHF	14113015
500 mg	50 u	10 ml	PSA	12113041	PSAHF	14113041
100 mg	50 u	10 ml	DEA	12113016	DEAHF	14113016
500 mg	50 u	10 ml	DEA	12113042	DEAHF	14113042
100 mg	50 u	10 ml	SAX	12113017	SAXHF	14113017
500 mg	50 u	10 ml	SAX	12113043	SAXHF	14113043

^{*} Les supports HF évitent le colmatage avec les échantillons visqueux comme l'urine de cheval, les tissus...

Colonnes Agilent Mega Bond Elut

Mega Bond Elut

Certains échantillons, à cause de leur grande concentration ou de leur matrice fortement chargée en interférants, nécessitent une capacité importante. Les colonnes Mega Bond Elut sont idéales pour ce type d'extraction. Une colonne de 10 g/60 ml peut retenir environ 500 mg d'analyte.

Les réservoirs en polyéthylène des colonnes Méga Bond Elut peuvent accepter jusqu'à 60 ml de solvant. L'échantillon est élué plus rapidement que sur une colonne standard.

Masse	Vol.	Qté	Support 40 µm	Réf.	Support 120 µm*	Réf.
1 g	6 ml	30 u	C18	12256001	C18HF	14256001
2 g	12 ml	20 u	C18	12256015	C18HF	14256015
5 g	20 ml	20 u	C18	12256023	C18HF	14256023
10 g	60 ml	16 u	C18	12256031	C18HF	14256031
1 g	6 ml	30 u	C8	12256002	C8HF	14256002
2 g	12 ml	20 u	C8	12256016	C8HF	14256016
5 g	20 ml	20 u	C8	12256024	C8HF	14256024
10 g	60 ml	16 u	C8	12256032	C8HF	14256032
1 g	6 ml	30 u	C2	12256003	C2HF	14256003
1 g	6 ml	30 u	C18OH	12256040	C18OHHF	14256040
1 g	6 ml	30 u	PH	12256004	PHHF	14256004
1 g	6 ml	30 u	СН	12256005		
2 g	12 ml	20 u	CH	12256039	CHHF	14256039
1 g	6 ml	30 u	CNU	12256006		
2 g	12 ml	20 u	CNU	12256017		
5 g	20 ml	20 u	CNU	12256025		
10 g	60 ml	16 u	CNU	12256033		
1 g	6 ml	30 u	20H	12256007		
1 g	6 ml	30 u	NH2	12256012	NH2HF	14256012
500 mg	6 ml	30 u	NH2	12256045		
2 g	12 ml	20 u	NH2	12256020	NH2HF	14256020
5 g	20 ml	20 u	NH2	12256028	NH2HF	14256028
10 g	60 ml	16 u	NH2	12256036	NH2HF	14256036
1 g	6 ml	30 u	Si	12256008	SiHF	14256008
2 g	12 ml	20 u	Si	12256018	SiHF	14256018
5 g	20 ml	20 u	Si	12256026	SiHF	14256026
10 g	60 ml	16 u	Si	12256034	SiHF	14256034
20 g	60 ml	16 u	Si	12256042		
1 g	6 ml	30 u	Al-A	12256043		
1 g	6 ml	30 u	Al-B	12256044		
10 g	60 ml	16 u	Al-N	12256050		

Colonnes Agilent Mega Bond Elut

Masse	Vol.	Qté	Support 40 µm	Réf.	Support 120 µm*	Réf.
1 g	6 ml	30 u	FI	12256014		
2 g	12 ml	20 u	FI	12256022		
1 g	20 ml	20 u	FI	12256047		
2 g	20 ml	20 u	FI	12256046		
5 g	20 ml	20 u	FI	12256030		
10 g	60 ml	16 u	FI	12256038		
1 g	6 ml	30 u	СВА	12256009	CBAHF	14256009
1 g	6 ml	30 u	PRS	12256010		
1 g	6 ml	30 u	SCX	12256011	SCXHF	14256011
2 g	12 ml	20 u	SCX	12256019	SCXHF	14256019
5 g	20 ml	20 u	SCX	12256027	SCXHF	14256027
10 g	60 ml	16 u	SCX	12256035	SCXHF	14256035
10 g	60 ml	16 u	PSA	12256041		
1 g	6 ml	30 u	SAX	12256013	SAXHF	14256013
2 g	12 ml	20 u	SAX	12256021	SAXHF	14256021
5 g	20 ml	20 u	SAX	12256029	SAXHF	14256029
10 g	60 ml	16 u	SAX	12256037	SAXHF	14256037

^{*} Les supports HF évitent le colmatage avec les échantillons visqueux comme l'urine de cheval, les tissus...

Colonnes Agilent Bond Elut Plexa

Bond Elut Plexa est une nouvelle génération de produits SPE polymériques, conçue pour apporter simplicité, haute performance analytique, et facilité d'utilisation.

Son originalité réside dans son architecture polymérique novatrice avec une couche externe hydroxylée hydrophile assurant un excellent débit des fluides biologiques. Le gradient de polarité à la surface du polymère détourne les petits analytes vers le centre plus hydrophobe de la bille de polymère, où ils sont retenus. Comme la surface est fortement polaire et totalement exempte d'amides, l'adsorption des protéines à la surface du polymère est minimisée, ce qui garantit des échantillons traités plus propres.

REMPLISSEZ LAVEZ **ELUEZ** La surface hydrophile, riche Les analytes qui ont passé la La structure spéciale des en eau, permet un excellent couche hydrophile, restent pores assure un excellent transfert de phase des anaétroitement liés au sein du novau profil d'élution lytes vers le centre du polyhydrophobe Les protéines endogênes de grande taille ne Extrait pur avec un peuvent se lier à la surface du polymère et ne impuretès sans rendement élevé. peuvent pénétrer à l'intérieur des pores. porte des analytes

Figure 1. L'architecture polymérique de pointe améliore les performances d'extraction.

Bond Elut Plexa

Polymère sphérique

Nautre : Styrène Divinyl Benzène hydrophilique

Particule : 45 µm Porosité : 100 Å

Surface spécifique : 550 m²/g

A.118

Bond Elut Plexa améliore la sensibilité

Des extraits plus purs donnent une meilleure sensibilité d'analyse. Les interférences liées à la matrice peuvent entraîner une baisse importante de la sensibilité analytique causée par un effet de suppression d'ions. La figue ci-dessous montre les rendements élevés de Plexa mais aussi sa capacité à minimiser l'effet de suppression d'ion comparativement avec d'autres polymères.

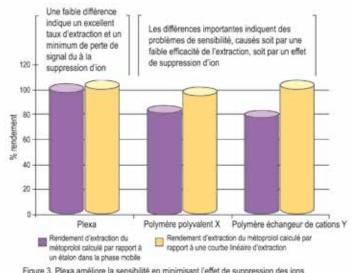


Figure 3. Plexa améliore la sensibilité en minimisant l'effet de suppression des ions et en maximisant le rendement.

Colonnes Agilent Bond Elut Plexa

La ligne de produit Bond Elut Plexa offre trois sélectivités :

- Bond Elut Plexa: polymère pour l'extraction de substances acides, basiques et neutres issus principalement de fluides biologiques
- Bond Elut Plexa PCX : polymère échange de cations pour l'extraction sélective de composés basiques issus de matrices chargées.
- Bond Elut Plexa PAX : polymère échange d'anions pour l'extraction sélective de composés acides sans interactions interférentes avec les molécules de type protéines et lipides.

Domaines: pharmaceutiques, toxicologiques, médico-légales, ...

Les produits Bond Elut Plexa, Plexa PCX et Plexa PAX sont disponibles aux formats colonnes, cartouches, plaques 96 puits.

Tube	Masse	Qté	Réf. Plexa	Réf Plexa PCX	Réf. Plexa PAX
Colonr	nes Bond E	Iut Plexa			
1 ml	30 mg	100 u	12109301	12108301	12107301
3 ml	30 mg	50 u	12109303	12108303	12107303
1 ml	60 mg	100 u	12109601	12108601	12107601
3 ml	60 mg	50 u	12109603	12108603	12107603
3 ml	200 mg	50 u	12109610	n.d.	n.d.
3 ml	500 mg	30 u	12109703	n.d.	n.d.
6 ml	200 mg	30 u	12109206	12108206	12107206
6 ml	500 mg	30 u	12259506	12258506	12257506
	nes Mega E	Sond Elut Plex	ка		
Colonr 12 ml	nes Mega E 500 mg	20 u	ka 327832	n.d.	
Colonr 12 ml	500 mg	20 u		n.d. A4968010	A4967010
Colonr 12 ml Plaque	500 mg e 96 puits r	20 u ond	327832		A4967010 A4967030
Colonr 12 ml Plaque 1 ml 1 ml	500 mg 96 puits r 10 mg	20 u ond u u	327832 A4969010	A4968010	
Colonr 12 ml Plaque 1 ml 1 ml	500 mg 96 puits r 10 mg 30 mg	20 u ond u u	327832 A4969010	A4968010	
Colonr 12 ml Plaque 1 ml 1 ml	500 mg 96 puits r 10 mg 30 mg 96 puits c	20 u ond u u	327832 A4969010 A4969030	A4968010 A4968030	A4967030
Colonr 12 ml Plaque 1 ml 1 ml Plaque 2 ml 2 ml	500 mg 96 puits r 10 mg 30 mg 96 puits c 10 mg	20 u ond u u carré u u	327832 A4969010 A4969030 A3969010	A4968010 A4968030 A3968010	A4967030 A3967010

Bond Elut Plexa PCX

Polymère sphérique échange d'ions Nautre : Styrène Divinyl Benzène sulfoné

Particule : 45 µm Porosité : 100 Å

Surface spécifique : 550 m²/g

Colonnes Clean-Up®

La gamme de supports de préparation d'échantillons **United Chemical Technologies** est certainement celle qui offre aujourd'hui le plus grand nombre de chimies différentes. Cette variété permet de couvrir l'ensemble des besoins dans des domaines aussi variés que l'environnement, la pharmaceutique, le suivi thérapeutique, le contrôle des sportifs...

- Silice : irrégulière
- Granulométrie : 40-60 µm
- Greffage : + de 50 chimies différentes
- Type de greffage : mono ou polymérique et échange d'ions
- End-capping: pour chaque support à l'exception de la silice une version End-capped et non End-capped est disponible.

Les colonnes présentées correspondent à la série End-capped. Pour commander la version non End-capped, remplacer les deux premières lettres de la référence CE par CU. Le tarif reste identique.

Supports hydrophobes et structures

Support	Structure
C2 ethyl	SiCH,CH,
C3 propyl	Si(CH ₂) ₂ CH ₃
C4 n-butyl	Si(CH ₂) ₃ CH ₃
iC4 isobutyl	SiCH ₂ CH(CH ₃) ₂
tC4 tertiary butyl	SiC(CH ₃) ₃
C5 phenyl	Si(CH ₂) ₄ CH ₃
C6 hexyl	Si(CH ₂) ₅ CH ₃
C7 heptyl	Si(CH ₂) ₆ CH ₃
C8 octyl	Si(CH ₂) ₇ CH ₃
C10 decyl	Si(CH ₂) ₉ CH ₃
C12 dodecyl	Si(CH ₂) ₁₁ CH ₃
C18 octadecyl	Si(CH ₂) ₁₇ CH ₃
C20 eicosyl	Si(CH ₂) ₁₉ CH ₃
Cyclohexyl	
Phenyl	

Masse	Vol.	Qté	C2, Ethyl	C8, Octyl	C18, Octadécyl	C30, Tricontyl	PH, Phényl	CH, Cyclohexyl
50 mg	1 ml	100 u		CEC081L1	CEC181L1		CEPHY1L1	
100 mg	1 ml	100 u	CEC02111	CEC08111	CEC18111	CEC30111	CEPHY111	
100 mg	3 ml	50 u		CEC08113	CEC18113	CEC30113		
200 mg	3 ml	50 u	CEC02123	CEC08123	CEC18123	CEC30123	CEPHY123	CECYH123
500 mg	3 ml	50 u		CEC08153	CEC18153		CEPHY153	CECYH153
500 mg	6 ml	50 u	CEC02156	CEC08156	CEC18156	CEC30156	CEPHY156	
1000 mg	6 ml	30 u	CEC021M6	CEC081M6	CEC181M6	CEC301M6	CEPHY1M6	CECYH1M6
100 mg	10 ml	50 u	CEC0211Z	CEC0811Z	CEC1811Z			
200 mg	10 ml	50 u		CEC0812Z	CEC1812Z	CEC3012Z	CEPHY12Z	
500 mg	10 ml	50 u			CEC1815Z			
2000 mg	15 ml	20 u		CEC0812M15	CEC1812M15			CECYH12M15
5000 mg	25 ml	20 u		CEC0815M25	CEC1815M25			
10000 mg	75 ml	10 u			CEC18110M75			

Supports hydrophiles

Support	Structure
Silica	SiOH
Diol	Si (CH ₂) ₃ OCH ₃ CHOHCH ₂ OH
Cyanopropyl	Si(CH ₂) ₃ CN
Florisil	Silicate de magnésium

Masse	Vol.	Qté	Silice	CN, cyano	OH, Diol	Florisil
50 mg	1 ml	100 u		CECNP1L1		
100 mg	1 ml	100 u	CUSIL111		CUDOL111	CUFLS111
200 mg	3 ml	50 u	CUSIL123	CECNP123	CUDOL123	CUFLS123
500 mg	3 ml	50 u	CUSIL153	CECNP153	CUDOL153	CUFLS153
500 mg	6 ml	50 u	CUSIL156	CECNP156	CUDOL156	CUFLS156
1000 mg	6 ml	30 u	CUSIL1M6	CECNP1M6		CUFLS1M6
100 mg	10 ml	50 u	CUSIL11Z			CUFLS11Z
200 mg	10 ml	50 u				CUFLS12Z
500 mg	10 ml	50 u	CUSIL15Z		CUDOL15Z	CUFLS15Z
2000 mg	15 ml	20 u	CUSIL12M15	CECNP12M15	CUDOL12M15	CUFLS12M15
5000 mg	25 ml	20 u	CUSIL15M25		CUDOL15M25	CUFLS15M25
10000 mg	75 ml	10 u	CUSIL110M75	CECNP110M75		CUFLS110M75

Echange de cations

Support	Structure	рКа
Acide propylsulfonique	Si(CH ₂) ₃ SO ₃ H	<1
Acide benzènesulfonique	Si (CH ₂) ₂ SO ₃ H	always charged
Acide carboxylique	SiCH ₂ COOH	4,8

Note : les échanges d'ions non ionisés peuvent être utilisés comme support hydrophile.

Masse	Vol.	Qté	ArSO3H	PrSO3H	СООН
50 mg	1 ml	100 u	CUBCX1L1		CUCCX1L1
100 mg	1 ml	100 u	CUBCX111	CUPCX111	CUCCX111
200 mg	3 ml	50 u	CUBCX123	CUPCX123	CUCCX123
500 mg	3 ml	50 u	CUBCX153	CUPCX153	CUCCX153
500 mg	6 ml	50 u	CUBCX156	CUPCX156	CUCCX156
100 mg	10 ml	50 u	CUBCX11Z	CUPCX11Z	CUCCX11Z
200 mg	10 ml	50 u	CUBCX12Z	CUPCX12Z	CUCCX12Z
500 mg	10 ml	50 u	CUBCX15Z	CUPCX15Z	
1 g	6 ml	30 u	CUBCX1M6	CUPCX1M6	CUCCX1M6
2 g	15 ml	20 u	CUBCX12M15		CUCCX12M15
5 g	25 ml	20 u			CUCCX15M25
10 g	75 ml	10 u	CUBCX110M75		

Colonnes Clean-Up®

Echange d'anions

Support	Structure	рКа
Aminopropyl (amine primaire)	Si(CH ₂) ₃ NH ₃ ⁺	9,8
n-2Aminoethyl (amine secondaire et primaire)	Si (CH ₂) ₃ NH ₂ +(CH ₂) ₂ NH ₃ +	10,1 ; 10,9
Diethylamino (amine tertiaire)	Si (CH ₂) ₃ NH ⁺ (CH ₂ CH ₃) ₂	10,6
Trimethyl amino (amine quaternaire)	Si (CH ₂) ₃ N ⁺ (CH ₃) ₃	always charged

Masse	Vol.	Qté	NH2	PSA	(C2H5)2NH+	R4N+
50 mg	1 ml	100 u	CUNAX1L1	CUPSA1L1		CUQAX1L1
100 mg	1 ml	100 u	CUNAX111	CUPSA111	CUDAX111	CUQAX111
200 mg	3 ml	50 u	CUNAX123	CUPSA123	CUDAX123	CUQAX123
500 mg	3 ml	50 u	CUNAX153	CUPSA153	CUDAX153	CUQAX153
500 mg	6 ml	50 u	CUNAX156	CUPSA156	CUDAX156	CUQAX156
1000 mg	6 ml	30 u	CUNAX1M6	CUPSA1M6		CUQAX1M6
100 mg	10 ml	50 u	CUNAX11Z	CUPSA11Z		CUQAX11Z
200 mg	10 ml	50 u	CUNAX12Z	CUPSA12Z		CUQAX12Z
500 mg	10 ml	50 u	CUNAX15Z			CUQAX15Z
2000 mg	15 ml	20 u	CUNAX12M15		CUDAX12M15	CUQAX12M15
5000 mg	25 ml	20 u	CUNAX15M25		CUDAX15M25	
10000 mg	75 ml	10 u	CUNAX110M75	CUPSA110M75		

Amine quaternaire

CAQAX

- Matrice silice
- Amine quaternaire échange d'anions
- Contre ion acétate (colonne standard forme Cl-)

CHQAX

- Matrice silice
- Amine quaternaire échange d'anions
- Contre ion hydroxyde (colonne standard forme OH-)

Masse	Vol.	Qté	Forme acétate	Forme OH-	
100 mg	1 ml	100 u	CAQAX111	CHQAX111	
200 mg	3 ml	50 u	CAQAX123	CHQAX123	
1 g	6 ml	30 u	CAQAX1M6	CHQAX1M6	

Colonnes Copolymériques Clean-Up®

Les supports copolymériques Clean-up® se composent de deux greffons de fonctionnalités différentes : une chaîne alkyl courte (en principe C8) d'une part et un échangeur d'ions ou une chaîne polaire d'autre part. Les deux substituants sont répartis, par une technique de polymérisation parfaitement maîtrisée, en parts égales à la surface de la silice. L'excellente reproductibilité de ces supports garantit le contrôle du mécanisme "mixte-mode" de séparation. Cette technologie permet par exemple la séparation d'une drogue et de ses métabolites chargés.

Voir ci-contre l'exemple d'une extraction sur colonne copolymérique Clean-up®.

1. Dépôt de l'échantillon

L'échantillon composé d'une drogue neutre et de son métabolite acide est déposé sur la colonne à un pH de 6. A ce pH de nombreuses amines sont chargées positivement (comme la fonction ionique de la colonne): élimination des cations. Fonction du pKa du métabolite, l'acide carboxylique est sous forme ionique : il interagit avec la fonction ionique de la colonne. La drogue se fixe sur la partie hydrophobe.

2. Lavage

Les interférants hydrophiles sont lavés par de l'eau ou un tampon faible (pH : 6). La colonne est ensuite séchée avec précaution.

3. Elution 1

Un solvant de faible polarité comme Hexane/Acétate d'éthyle (80/20) permet la récupération de la drogue.

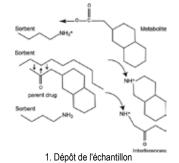
4. Elution 2

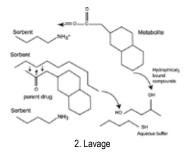
L'élution finale est réalisée avec un acide pour neutraliser la charge des analytes acides (pH: 2-3).

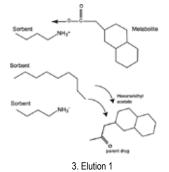
Masse	Vol.	Qté	R + ArSO3H	R + COOH	R + PrSO3H
50 mg	1 ml	100 u	CUBCX2L1	CUCCX2L1	CUPCX2L1
100 mg	1 ml	100 u	CUBCX211	CUCCX211	CUPCX211
200 mg	3 ml	50 u	CUBCX223	CUCCX223	CUPCX223
500 mg	3 ml	50 u	CUBCX253		
500 mg	6 ml	50 u	CUBCX256	CUCCX256	CUPCX256
100 mg	10 ml	50 u	CUBCX21Z		
200 mg	10 ml	50 u	CUBCX22Z		CUPCX22Z
500 mg	10 ml	50 u	CUBCX25Z		
1 g	6 ml	30 u	CUBCX2M6		

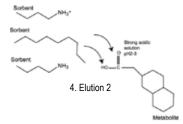
Masse	Vol.	Qté	R + R4N+	R + PrNH3+	
50 mg	1 ml	100 u	CUQAX2L1	CUNAX2L1	
100 mg	1 ml	100 u	CUQAX211	CUNAX211	
200 mg	3 ml	50 u	CUQAX223	CUNAX223	
500 mg	3 ml	50 u	CUQAX253	CUNAX253	
500 mg	6 ml	50 u	CUQAX256		
100 mg	10 ml	50 u			
200 mg	10 ml	50 u	CUQAX22Z	CUNAX22Z	
500 mg	10 ml	50 u	CUQAX25Z		
1 g	6 ml	30 u	CUQAX2M6		

R + ArSO3H: hydrophobe + acide Benzène

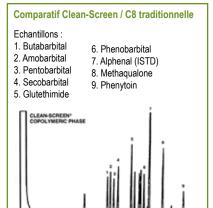

sulfonique

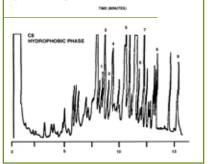

R + PrSO3H: hydrophobe + acide Propyl


sulfonique


R + COOH: hydrophobe + acide Carboxylique R + R4N+: hydrophobe + Amine quaternaire

R + PrNH3+: hydrophobe + Amino-propyl
R + CN: hydrophobe + Cyano-propyl
R + Cyclohexyl: hydrophobe+ Cyclo-hexyl





interchim

Colonnes Clean-Screen®

Les colonnes Clean-Screen ont été développées en 1986 pour améliorer les techniques d'extraction de droques des fluides biologiques.

- Investigations post-mortem
- Investigations criminelles
- Droques dans les urines
- Contrôles sportifs
- Suivis thérapeutiques

Nature des colonnes Clean-Screen

Deux types de greffons se répartissent, à la surface du gel de silice pure, en quantités égales :

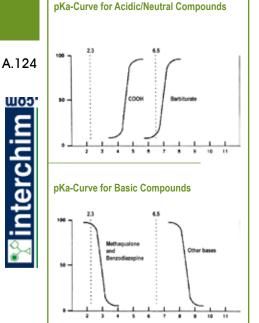
- Une chaîne hydrophobe
- Un échangeur d'ions

Les supports copolymériques Clean-Screen sont stables dans une large fourchette de pH. La chimie unique des colonnes Clean-Screen conduit à des extractions rapides, reproductibles avec d'excellents taux de recouvrement.

Silice: irrégulière Granulométrie : 60 µm Porosité: 60 Å Taux de carbone : 12% M équivalent/g: 0,030 Cation: toujours chargé

Les mécanismes "mixed-mode" permettent l'isolation des droques acides/neutres et basiques en une seule extraction avec une seule et même colonne.

Clean-Screen DAU


La fonction hydrophobe est de type C8. La force ionique de l'échangeur de cation est comparable à celle de l'acide Benzène sulfonique.

Applications: NIDA 5, Benzodiazépines, Barbituriques, antidépresseurs ...

Clean-Screen THC

La fonction hydrophobe est de type C8. La force ionique de l'échangeur d'anions est comparable à celle d'une amine quaternaire.

Applications: Cannabinoïdes

Extraction sur phase solide

Colonnes Clean-Screen®

Drogues extraites sur colonnes Clean-Screen®:

Diogues extraites sur	colonnes clean-octeen .		
Acepromazine	Diazepam	Meclizine	1-Phenylcyclohexene
Acetaminophen	Dihydrocodeine	Mefenamic acid	Phenylpropanolamine
Amantadine	Diltiazem	Meperidine	Phenytoin
Amitriptyline	Diphenhydramine	Meprobamate	Primidone
Amitriptyline	Dipyrone	Methadone	Procaine
Metabolite	Doxepin	Methadone metabolite	Propioylpromazine
Amphetamine	Doxepin metabolite	Methamphetamine	Propoxyphene
Azaperone	Doxylamine	Methyl benzoate	Propoxyphene metabolite
Azaperone-5-	4-Hydroxychlorpromazine	Methyl ecgoninine	Propanolol
Glucuronide	Ecgonine	Methyl p-aminobenzoate	Propylparaben
Barbiturates	Ethacrynic acid	Methylphenidate	Quinidine
Benzocaines	Etorphine	Methyl salicylate	Quinine
Benzoic acid	Etorphine-3-glucuronide	Methylparaben	Rompun
Benzoylecgonine	Fentanyl	Methyprylon and metabolite	Salbutamol
Benztropine	Flunixin	Metolazone	Salicyclic acid
Buspirone	Fluoxetine	Morphine	Strychnine
Caffeine	Flurosemide	Morphine-3-glucuronide	Temazepam
Carbamazepine	GGE	N-N1-diethyltryptamine	Terbutaline
Carisoprodol	Glutethimide	Nalorphine-3-glucuronide	Tetracaine
Chlordiazepoxide	Glutethimide metabolite	Naloxone	THC and metabolite
Chloroquine	Glycopyrrolate	Naproxen	Theophylline
Chlorpheniremine	Hordenine	Nefopam	Thiopental
Chlorpromazine	Hydrocortisone	Nicotine	Thioridazine
Chlorpropamide	Hydromorphone	Nordiazepam	Timolol
Clenbuterol	Ibuprofen	Nubain	Tranylcypromine
Clonazepam	Imipramine	Oxybutynin	Trifluoperazine
Cocaine	Imipramine metabolite	Oxycodone	Trimethoprime
Codeine	Indomethacin	Pemoline	Trimipramine
Cotinine	Ketamine	Pentazocine	Verapamil
Cresol	Lasix	Phencyclidine	Verapamil metabolite
Cyclobenzaprine	Lidocaine	Phenethylamine	Xylazine
Dextromethorphan	Loxapine	phentermine	
Dextrophan	Mazindol	Phenylbutazone	

Préparation d'échantillons

Colonnes Clean-Screen®

Mécanismes d'une extraction sur colonne Clean-Screen®

- 1. Lorsque l'échantillon est déposé sur la colonne à pH 6, les fonctions acides carboxyliques présentes dans l'échantillon sont ionisées. Ceci crée une répulsion entre la colonne et de nombreux interférents et réduit ainsi considérablement le nombre de composés adsorbés sur la colonne. A ce pH, barbituriques et Méthaqualone ne sont pas chargés et s'adsorbent sur la partie hydrophobe de la silice. Dans le même temps, les drogues aminées comme cocaïne et opiacés s'adsorbent sur la colonne par interactions hydrophobes et échange d'ions.
- 2. La colonne est lavée avec de l'eau ou un tampon faible autour de pH 6 sans risque de perte de composés d'intérêts. Un lavage avec un acide acétique 1.0 M, pH 2-3 fixe la Méthaqualone ioniquement sur la colonne. Après séchage de la colonne, on peut éluer les composés hydrophobes par passage de solvants de faible polarité comme Dichlorométhane, Hexane/ acétate d'éthyle. La majorité des interférents est éliminée par le méthanol. Les cations sont élués après un nouveau séchage de la colonne. Cette étape est nécessaire pour éliminer toute trace d'eau qui peut interagir avec les solvants d'élution de la dernière étape.
- 3. Les cations sont élués par un mélange Chlorure de méthylène/isopropanol/hydroxyde d'ammonium qui rompt dans le même temps les interactions hydrophobes et ioniques.

Cette méthode d'extraction utilisant les colonnes Clean-Screen diminue considérablement le bruit de fond obtenu généralement avec les colonnes C8 End-capped (voir chromatogramme comparatif).

Méthode d'extraction des drogues avec les colonnes Clean-Screen®

Clean-Screen®	Hydrolyse	Préparation d'échantillon	Cond.	Lavage	Elution	Concentration	Restitution	Dérivatisation par GC/MS	Structure
Antidépresseurs tricycliques		pH ajusté à 6,0 avec un tampon phosphate	$\begin{array}{c} \text{M\'ethanol} \\ \text{DI H}_2\text{O} \\ \text{tampon} \\ \text{phosphate} \end{array}$	DI H ₂ O acide acétique Méthanol	Chloride Methy- lène Isopropanol Hydroxide Amonium (78:20:2)	Evaporation à sec	Méthanol	Acétylation pour amines secondaires	CH(CH ₂) ₃ N(CH ₂) ₃
Barbituriques		pH ajusté à 6,0 avec un tampon phosphate	Méthanol DI H ₂ O tampon phosphate	DI H ₂ O acide acétique	Hexane/Ethyl Acétate (50:50)	Evaporation à sec	Ethyl Acétate		CH ₃ CH CH ₂) 3 CH O CH ₃
Benzodiazepines	1.Hydrolyse acide pour les dérivés de la benzophenone 2.Enzyma- tique avec β-glucuronidase	pH ajusté à 6,0 avec un tampon acetate	Méthanol DI H ₂ O tampon phosphate	20% Acétonitrile dans tampon phosphate	Ethyl acétate	Evaporation à sec	Ethyl Acétate	BSTFA w/1% TMCS	CH N N N C ₄ H ₃
LSD		pH ajusté à 6,0 avec un tampon Phosphate	Méthanol DI H ₂ O tampon phosphate	DI H ₂ O Acide acétique Methanol	Methylène Chloride Isopropanol Am- monium Hydroxide (78:20:2)	Evaporation à sec	Méthanol		CON (C ₂ H ₃) ₃
Meperidine		pH ajusté à 6,0 avec un tampon Phosphate	Méthanol DI H ₂ O tampon	DI H ₂ O Acide acétique Methanol	Methylène Chloride Isopropanol Am- monium Hydroxide (78:20:2)	Evaporation à sec	Ethyl Acétate	BSTFA w/1% TMCS	CH ₃ N C ₄ H ₃ COOC ₃ H ₅

Phenycyclidine

Méthode d'extraction des drogues avec les colonnes Clean-Screen® (suite) Clean-Screen® Hydrolyse Préparation Cond. Lavage Elution Concentration Restitution Dérivatisation d'échantillon par GC/MS 9 THC-COOH pH aiusté à 3.5 Méthanol DI H₂O Hexane/Ethyl Acétate Ethyl BSTFA w/1% 1.Hydrolyse Evaporation basique avec avec de l'acide DI H_oO 40% Acéto-Acétate TMCS соон (50/50)à sec 10 N KOH acétique glacial 0.1N HCI nitrile in 0.1 2.Hydrolyse NHCI enzymatique avec β-glucuronidase Cocaine et Ben-Méthanol DI H₂O Methylène Chloride Ethyl BSTFA w/1% pH ajusté à 6,0 Evaporation zoylecgonine avec un tampon DI H₂O 0.1 N HCI Isopropanol Amà sec Acétate TMCS monium Hydroxide Phosphate tampon Methanol -OCOC₄H₃ phosphate (78:20:2)Codeine et 1.Hydrolyse pH ajusté à 6,0 Méthanol DI H₂O Methylène Chloride Evaporation Ethyl BSTFA w/1% Morphine basique avec avec un tampon DI H₂O Tampon Isopropanol Amà sec Acétate **TMCS** Ņ CH, HCI and Phosphate tampon acétique monium Hydroxide heat (121°C) phosphate Méthanol (78:20:2)2.Hydrolyse enzymatique avec β-glucuronidase Amphetamine pH ajusté Méthanol DI DI H₂O Methylène Add 30 µl DMF Ethyl Acétate PFPA et Metham-pheà 6.0 avec H_oO tampon Acide Chloride Evaporer à 30 µl (PFAA) un tampon phosphate acétique tamine ${\rm \stackrel{NH}{_{2}}}{\rm C_{4}H_{5}CHCH_{3}}$ Phosphate Methanol propanol Ammonium

Methylène Chloride

monium Hydroxide

Isopropanol Am-

(78:20:2)

Evaporation

à sec

Ethyl

Acétate

Hydroxide (78:20:2)

DI H₂O

acétique

Methanol

Acide

pH ajusté à 6,0

Phosphate

avec un tampon

Méthanol

DI H₂O

tampon

phosphate

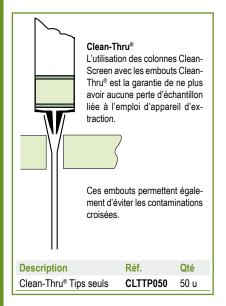
Préparation d'échantillons

Colonnes Clean-Screen®

Clean-Screen DAU

Masse	Vol.	Qté	Sans Clean Thru®	avec Clean Thru®
50 mg	1 ml	100 u	CSDAU1L1	
50 mg	3 ml	50 u	CSDAU1L3	
130 mg	1 ml	100 u	CSDAU131	
130 mg	3 ml	50 u	CSDAU133	CCDAU133
200 mg	3 ml	50 u	CSDAU203	CCDAU203
300 mg	3 ml	50 u	CSDAU303	CCDAU303
500 mg	3 ml	50 u	CSDAU503	
200 mg	6 ml	50 u	CSDAU206	CCDAU206
500 mg	6 ml	50 u	CSDAU506	CCDAU506
1000 mg	6 ml	30 u	CSDAU1M6	
50 mg	10 ml	50 u	ZSDAU005	
130 mg	10 ml	50 u	ZSDAU013	ZCDAU013
200 mg	10 ml	50 u	ZSDAU020	ZCDAU020
500 mg	15 ml	50 u	CSDAU515	

Clean-Screen THC


Masse	Vol.	Qté	THC sans Clean Thru®	THC avec Clean Thru®
130 mg	1ml	100 u	CSTHC131	CCTHC131
200 mg	3 ml	50 u	CSTHC203	CCTHC203
300 mg	3 ml	50 u	CSTHC303	CCTHC303
500 mg	3 ml	50 u	CSTHC503	CCTHC503
200 mg	6 ml	50 u	CSTHC206	CCTHC206
500 mg	6 ml	50 u	CSTHC506	
1000 mg	6 ml	30 u	CSTHC1M6	CCTHC1M6
130 mg	10 ml	50 u	ZSTHC013	ZCTHC013
200 mg	10 ml	50 u	ZSTHC020	ZCTHC020
500 mg	10 ml	50 u	CSTHC515	

Clean-Screen THCA

Ce nouveau type de colonne Clean-Screen THCA a été développé pour l'extraction du métabolite acide du delta-9-THC.

La procédure d'extraction est plus rapide, l'étape de conditionnement devient facultative. L'extrait d'urine est plus propre ce qui permet à l'analyse une meilleure reproductibilité en limitant l'encrassement de la source de détection.

Masse	Vol.	Qté	THCA sans Clean Thru®	THCA avec Clean Thru®
200 mg	3 ml	50 u	CSTHCM203	CCTHCM203
500 mg	3 ml	50 u	CSTHCM503	
200 mg	6 ml	50 u	CSTHCM206	CCTHCM206
500 mg	6 ml	50 u	CSTHCM506	
200 mg	10 ml	50 u	ZSTHCM020	ZCTHCM020

THC : delta-9-tétrahydrocannabinol
THCA : acide tetrahydrocannabolique

Extraction sur phase solide

Colonnes Clean-Screen®

Clean-Screen GHB

Masse	Vol.	Qté	GHB sans Clean Thru®	GHB avec Clean Thru®
200 mg	3 ml	50 u	CSGHB203	
200 mg	10 ml	50 u	ZSGHB020	ZCGHB020

GHB: acide 4-hydroxybutanoïque ou

gamma-hydroxybutyrate BNZ : benzodiazépines ETG : éthylglucuronide

Clean-Screen BNZ

Masse	Vol.	Qté	BNZ sans Clean Thru®
200 mg	3 ml	50 u	CSBNZ203
300 mg	10 ml	50 u	ZSBNZ030

Clean-Screen ETG

Masse	Vol.	Qté	ETG sans Clean Thru®
200 mg	3 ml	50 u	CSETG203
400 mg	10 ml	50 u	ZSETG040

Clean-Screen XCEL™

Ces nouvelles colonnes SPE Clean-Screen XCEL™ ont été conçues pour réduire le nombre d'étapes durant le procédé d'extraction. La diminution de temps de préparation ainsi que la quantité de solvants utilisés n'interfère pas sur le rendement d'extraction qui reste toujours optimum.

Deux lignes de produits existent :

Clean-Screen XCEL I : pour l'extraction de substances basiques comme les benzodiazépines et opiacés.

Clean-Screen XCEL II: pour l'extraction de métabolites du THC

Masse	Vol.	Qté	XCEL I	XCELII
130 mg	1 ml	100 u	CSXCE111	CSXCE211
130 mg	3 ml	50 u	CSXCE103	CSXCE2103
130 mg	6 ml	50 u	CSXCE106	CSXCE2106
130 mg	10 ml	50 u	ZSXCE010	ZSXCE2010

Colonnes polymériques Styre Screen®

Les colonnes Styre Screen® sont remplies avec des particules de polymère ultra pur de 30 µm. La nature du support est du polystyrène divinylbenzène, s'indexant sous la forme simple (PSDVB non greffé) mais aussi sous de multiples greffages (hydrophobe, échange de cations, ou échange d'anions).

Comparativement aux support silices, la capacité de charge des polymères Styre Screen® est plus importante ce qui permet d'utiliser moins d'adsorbant pour réaliser une même extraction. Le conditionnement préalable des colonnes est optionnel et les volumes de solvants utilisés sont plus faibles.

Ces colonnes recouvrent un large panel d'applications pour des extractions rapides, efficaces et sélectives de substances acides, basiques ou neutres.

Support disponible:

- DBX : polymère greffé SCX (acide benzène sulfonique) + C18
- DVB : polystyrène divinylbenzène
- BCX : polymère greffé SCX (acide benzène sulfonique)
- C18 : polymère greffé C18
- QAX : polymère greffé SAX (amine quaternaire)
- THC : polymère spécifique pour l'extraction de THC

Masse	Vol.	Qté	DBX	DVB	BCX	C18	QAX
30 mg	1 ml	100 u	SSDBX031	SSDVB031	SSBCX031	SSC18031	SSQAX031
30 mg	3 ml	50 u	SSDBX033	SSDVB033	SSBCX033	SSC18033	SSQAX033
50 mg	6 ml	50 u	SSDBX056	SSDVB056	SSBCX056	SSC18056	SSQAX056

Masse	Vol.	Qté	THC
30 mg	1 ml	100 u	SSTHC031
60 mg	3 ml	50 u	SSTHC063
60 mg	6 ml	50 u	SSTHC066
60 mg	10 ml	50 u	SSTHC06Z
100 mg	6 ml	50 u	SSTHC116
100 mg	10 ml	50 u	SSTHC11Z

Les colonnes d'extraction Enviro-Clean® sont dédiées à l'isolation et la séparation des molécules liées à l'environnement comme les pesticides, herbicides, PAHs, PCB ...

Les colonnes Enviro-Clean® sont disponibles dans une large variété : polaire, apolaire, échange d'ions, copolymérique ...

Elles satisfont entièrement aux exigences spécifiques des extractions de polluants :

- Isolation du composé d'intérêt de matrices complexes
- Concentration de faible teneur en composé d'intérêt à partir de larges volumes d'échantillons

Les colonnes Enviro-Clean® sont disponibles avec des masses de support de 50 mg à 10 g dans diverses configurations de réservoir. Elles présentent une excellente reproductibilité de colonne à colonne. Chaque lot de support est testé par des applications spécifiques à l'environnement.

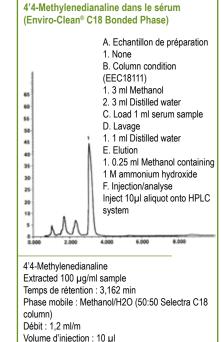
Supports disponibles sur demande dans le format Enviro-Clean®

- Hydrophobe: C2, n C3, n C4, iso C4, tert C4, C5, C6,C7,C8, n C10, C12, C20
- Hydrophile: Florisil PR, Alumine (A, N, B), Phenyl, Cyclohexyl, Cyano, silice
- Echange d'ions : N-2-Aminoethyl, acide Benzène sulfonique, acide Propyl sulfonique, acide Carboxylique, Amine quaternaire, Aminopropyl, Diethylamino

Avantages:

- Meilleur taux de récupération
- Meilleure reproductibilité
- Récupérations multiples en une seule fois sur une même colonne

Détermination des composés organiques dans les boissons


La concentration de l'échantillon est une donnée importante de l'extraction sur phase greffée. La sélectivité du support permet à de faibles teneurs en composé d'intérêt d'être capturées à partir d'un large volume d'échantillon.

La méthode EPA 525 (détermination des composés organiques dans l'eau potable) indique que :

- Il faut faire passer 1 litre d'eau sur une colonne C18 de 1 g.
- Les organiques retenus sont ensuite élués par le dichlorométhane.
- Le volume d'éluat récupéré est d'environ 10 ml (il peut être alors réduit).
- Le niveau de détection est de l'ordre de 10 ng/L.

Les colonnes C18 Enviro-Clean® représentent un des meilleurs choix possibles pour ce type d'application.

Masse	Vol.	Qté	C18, ec	C18, nec
50 mg	1 ml	100 u	EEC181L1	
100 mg	1 ml	100 u	EEC18111	EUC18111
200 mg	3 ml	50 u	EEC18123	EUC18123
500 mg	3 ml	50 u	EEC18153	EUC18153
500 mg	6 ml	50 u	EEC18156	EUC18156
100 mg	10 ml	50 u	EEC1811Z	
200 mg	10 ml	50 u	EEC1812Z	
500 mg	10 ml	50 u		EUC1815Z
1000 mg	6 ml	30 u	EEC181M6	EUC181M6
2000 mg	15 ml	20 u	EEC1812M15	EUC1812M15
5000 mg	25 ml	20 u	EEC1815M25	
10000 mg	75 ml	10 u	EEC18110M75	EUC18110M75

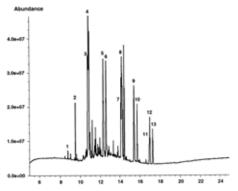
Détection : 254 nm

A.131

Préparation d'échantillons

Colonnes Enviro-Clean®

Support copolymérique


			Hydrophobe + é	change de cations	Hydrophobe + échange d'anions		
Masse	Vol.	Qté	RSO3H	PrSO3H	R4N+	PrNH2	
200 mg	3 ml	50 u	EUBCX223	EUPCX223	EUQAX223	EUNAX223	
500 mg	3 ml	50 u				EUNAX253	
500 mg	6 ml	50 u	EUBCX256		EUQAX256		
100 mg	10 ml	50 u				EUNAX21Z	
1 g	6 ml	30 u	EUBCX2M6		EUQAX2M6	EUNAX2M6	
10 g	75 ml	10 u				EUNAX210M75	

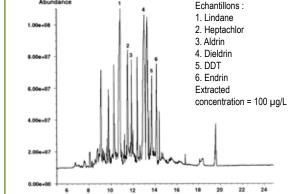
PAHS dans l'eau de bassins (Enviro-Clean® C18 Bonded Phase)

Echantillons: 7. Benz(a)anthracene (14.149 min)

- 1. Acenaphthene (8.778 min) 8. Chrysene (14.219)
- 2. Flurorene (9.531 min) 9. Benzo(k)fluoranthene
- 3. Phenanthrene (10.801 min) 10. Benzo(a)pyrene (15.765 min)
- 4. Anthracene (10.884 min) 11. Indeno (1,2,3-c,d) pyrene (16.974 min)
- 5. Fluroranthene (12.310 min) 12. Benz(a,h)anthracene (17.044 min)
- 6. Pyrene (12.584 min) 13. Benzo(ghi)pyrene (17.296 min)

- A. Echantillon de préparation
- 1. Filter water through a 0.5 µm filter
- 2. Add 2 ml of methanol to 200 ml of filtered water sample
- 3. Mix and degas sample for 2 minutes
- B. Column condition (EEC18111)
- 1. 15-20 ml Methylene chloride/trichlorotrifluoroethylene (TCTFE)
- 2. 15-20 ml TCTFE. Dry for 5 minutes
- 3. 15-20 ml Methanol
- 4. 20 ml Distilled water
- C. Load 200 ml water sample (rate 8-10 ml/min)
- D. Column wash
- 1. 20 ml Distilled water
- E. Dry column for 15-30 minutes under maximum vacuum pressure
- F. Elution
- 1. 20 ml of TCTFE
- G. Concentration/Evaporation

Evaporate to dryness under a nitrogen stream at room temperature


H. Injection/analysis

Reconstitute with 100µl TCTFE

Inject at 1-2 µl aliquot onto GC

Pesticides dans l'eau (Enviro-Clean® C18 Bonded Phase)

- A. Echantillon de préparation
- B. Column condition (EEC18111)
- 1. 10 ml Hexane/Acetone (50:50)
- 2. 10 ml Methanol
- 3. 10 ml Distilled water
- C. Load 1 liter sample (Rate 8-10 ml/min)
- D. Column wash
- 1. 20 ml Distilled water
- E. Dry column for 15-30 minutes under maximum vacuum pressure
- F. Elution
- 1. 10 ml Hexane/Acetone (50:50)
- G. Concentration/Evaporation

Add 500 µl of a keeper solvent (methanol, DMF, other). Evaporate to 500 µl under a nitrogen stream at room temperature

H. Injection/analysis

Inject at 1-2 µl aliquot onto GC

Extraction sur phase solide

Colonnes J.T. BAKER® Bakerbond®

Avantor Performance Materials propose une large variété de colonnes pour l'extraction sur phase solide aussi bien sur une base de silice que sur une base polymère.

La technologie de fabrication répond à des critères qualité élevés, la chimie de surface des silices est parfaitement contrôlée, les performances sont continues et reproductibles.

La gamme SPE Bakerbond se compose de :

- Colonnes 1, 3, 6 ml
- Masse d'adsorbants de 50, 100, 200, 1000 mg
- Colonnes en Polypropylène ou en verre

Supports SPE disponibles:

- Phase Inverse: silices C18, C8, C2, PH, CH, ..., polymères SDB1, SDB2
- Phase normale : CN, NH2, Diol
- Adsorption: charbon actif, Alunime Neutre, Florisil®, Silice vierge
- Échange d'ions : SCX, SAX, WCX, PSA, DEA

Colonnes Phase Inverse Silice

Туре	Masse	Vol.	Qté	C18
	50 mg	1 ml	100 u	7020-00
	100 mg	1 ml	100 u	7020-01
Format Jumbo Pack	100 mg	1 ml	400 u	7020-21
Format Jumbo Pack	100 mg	1 ml	1000 u	7020-22
	200 mg	3 ml	50 u	7020-02
	500 mg	3 ml	50 u	7020-03
Format Jumbo Pack	500 mg	3 ml	400 u	7020-23
	500 mg	6 ml	30 u	7020-06
Format Jumbo Pack	500 mg	6 ml	250 u	7020-26
	1000 mg	6 ml	30 u	7020-07
Format Jumbo Pack	1000 mg	6 ml	250 u	7020-27
	2000 mg	6 ml	30 u	7020-08
Colonnes en verre	500 mg	3 ml	50 u	7334-03
Colonnes en verre	1000 mg	3 ml	50 u	7334-04
Colonnes en verre	500 mg	8 ml	30 u	7334-06
Colonnes en verre	1000 mg	8 ml	30 u	7334-07
Colonnes en verre	2000 mg	8 ml	30 u	7334-08

Туре	Masse	Vol.	qT2	C18 PolarPlus	C18 Light Load	C8	C2	Phényl
	50 mg	1 ml	100 u	7466-00				
	100 mg	1 ml	100 u	7466-01	7189-01	7087-01	7273-01	7095-01
	200 mg	3 ml	50 u		7189-02	7087-02	7273-02	
	500 mg	3 ml	50 u	7466-03	7189-03	7087-03		7095-03
	500 mg	6 ml	30 u	7466-06		7087-06		7095-06
Colonnes en verre	1000 mg	3 ml	50 u	7466-04	7189-04			
Colonnes en verre	500 mg	8 ml	30 u		7189-06			

C18 Polar Plus

Silice Bakerbond Granulométrie : 40 μm Porosité : 60 Å

La balance greffage/End-capping est ajustée pour obtenir le meilleur rendement d'extraction pour les composés moyennement polaires

A.133

Colonnes Phase Inverse Polymère

Туре	Masse	Vol.	Qté	SDB-1	SDB-2	
	100 mg	3 ml	50 u	7519-01		
	200 mg	3 ml	50 u	7519-02	7523-02	
Format Jumbo Pack	200 mg	3 ml	400 u	7519-22	7523-22	
	200 mg	6 ml	30 u	7519-05	7523-05	
Format Jumbo Pack	200 mg	6 ml	250 u	7519-25		
Colonnes en verre	200 mg	3 ml	50 u	7609-02		

A.134

Extraction sur phase solide

Colonnes J.T. BAKER® Bakerbond®

Bakerbond SDB1 - SDB2

Polymère à grande surface spécifique pour les extractions de composés relativement polaires.

Colonnes Phase Normale

Masse	Vol.	Qté	NH2	CN	Diol	
100 mg	1 ml	100 u	7088-01	7021-01	7094-01	
100 mg	3 ml	50 u		7021-02		
200 mg	3 ml	50 u	7088-02			
500 mg	3 ml	50 u	7088-03	7021-03	7094-03	
500 mg	6 ml	30 u			7094-06	
2000 mg	6 ml	30 u	7088-09	7021-07		

Colonnes d'adsorption

Туре	Masse	Vol.	Qté	Silice	Florisil	"Alumine Neutre"	"Charbon Actif"
	100 mg	1 ml	100 u	7086-01			
	200 mg	3 ml	50 u	7086-02			
Format Jumbo Pack	200 mg	3 ml	400 u	7086-22			
	500 mg	3 ml	50 u	7086-03	7213-03	7214-03	
Format Jumbo Pack	500 mg	3 ml	400 u	7086-23	7213-23		
	500 mg	6 ml	30 u	7086-06			
Format Jumbo Pack	500 mg	6 ml	250 u	7086-26			7575-06
	1000 mg	6 ml	30 u	7086-07	7213-07	7214-07	7575-07
Format Jumbo Pack	1000 mg	6 ml	250 u	7086-28	7213-27		
	2000 mg	6 ml	30 u	7086-08	7213-08		
Colonnes en verre	500 mg	8 ml	30 u		7420-06		
Colonnes en verre	1000 mg	8 ml	30 u	7337-07	7420-07		
Colonnes en verre	2000 mg	8 ml	30 u	7337-08			

Colonnes d'échange d'ions

Туре	Masse	Vol.	Qté	Acide benzène sulfonique
	100 mg	1 ml	100 u	7090-01
	500 mg	3 ml	50 u	7090-03
	1000 mg	6 ml	30 u	7090-07

Masse V	/ol.				Acide Propyl Sulfonique	Diamino (NH2/NH)
100 mg 1	ml	100 u	7091-01	7211-01		
500 mg 3	3 ml	50 u	7091-03	7211-03	7155-03	7089-03

Colonnes Spéciales

Туре	Masse	Vol.	Qté	Narc-2	Narc-1
	125 mg	3 ml	50 u	7225-04	
	250 mg	6 ml	30 u	7225-05	
	500 mg	3 ml	50 u		7221-03
	500 mg	6 ml	30 u	7225-06	
Format Jumbo Pack	125 mg	3 ml	400 u	7225-24	

Colonnes J.T. BAKER® Bakerbond® Speedisk®

Les colonnes SPE Bakerbond Speedisk® sont élaborées à partir d'un cahier des charges sophistiqué. Elles utilisent notamment de la silice HPLC Bakerbond comme support solide et permetent des extractions rapides, efficaces et reproductibles.

La technologie brevetée Speedisk® permet :

- Des extractions 9 fois plus rapide que les colonnes traditionnelles Bakerbond
- Une diminution de la consommation en solvants
- Une réduction ou élimination de l'étapes SPE d'élution

Comparatif entres les colonnes SPE Bakerbond & Bakerbond Speedisk®

	Bakerbond	Bakerbond Speedisk®
Vol. / Masse	1 ml / 100 mg	1 ml / 20 mg
Granulométrie	40 µm	25 μm
Volume de l'échantillon	2 ml	1 ml
Conditionnement de la colonne	2 ml (20 à 40 sec)	0,5 ml (5 à 10 sec)
Ajout de l'échantillon	2 ml (100 sec)	50 µl à 0,5 ml (50 sec)
Rinçage	1,5 ml (15 à 20 sec)	0,4 ml (2 à 5 sec)
Élution	1 à 2 ml (15 à 20 sec)	0,3 à 0,6 ml (2 à 5 sec)
Concentration de l'échantillon	3 à 10 min	réduit ou éliminé

Technologie Speedisk®

Formats de colonnes disponibles :

- Avec collerette
- Sans collerette, s'adaptant sur l'appareil Speedisk 96

Silice Bakerbond Speedisk®

Granulométrie : 10 µm Porosité : 60 Å

Polymère H2O-Phobic Granulométrie : 25 µm

Polymère H2O-Phillic Granulométrie : 25 µm

A.136

Colonnes J.T. BAKER® Bakerbond® Speedisk®

Colonnes Phase Inverse	Masse	Vol.	Qté	C18	C18 Ligh Load		18 Polar- us	C8		C8 Polar- Plus	PH	C2
	10 mg	1 ml	100 u		8151-00							
	20 mg	1 ml	100 u	7606-01	8151-01	81	53-01					
	35 mg	1 ml	100 u	7606-02	8151-02	81	53-02	8154-	02	8156-02	8160-02	8157-02
	35 mg	3 ml	50 u			81	53-03			8156-03		
	50 mg	3 ml	50 u	7606-04	8151-04		53-04	8154-	04	8156-04	8160-04	8157-04
	100 mg	3 ml	50 u	7606-06	8151-06		53-06	8154-			8160-06	
	100 mg	6 ml	30 u		8151-08	•		•.•.			0.000	
	200 mg	6 ml	30 u	7606-09	8151-09	81	53-09	8154-	.09		8160-09	8157-09
	20 mg	1 ml sans bord	96 u	7606-11	8151-11		53-11	8154-		8156-11	0.00 00	0.0.00
	Zonig	Tim dand bord		7000 11	010111	- 0.	00 11	0104		0100 11		
Colonnes	Masse	Vol.	Qté	H2O-Philic	H2O-F	Philic	H2O-Phi	lic	H2O-F	hobic	H2O-Phobic	H2O-Phobic
polymériques				DVB	SA-D\	VB	SC-DVB		DVB		SC-DVB	WA-DVB
	20 mg	1 ml	100 u	8108-01			8111-01		8109-0)1		
	35 mg	1 ml	100 u	8108-02	8113-0	02	8111-02		8109-0)2	8196-02	8115-02
	35 mg	3 ml	50 u	8108-03	8113-0	03	8111-03		8109-0)3	8196-03	
	50 mg	3 ml	50 u	8108-04	8113-0	04	8111-04		8109-0)4	8196-04	8115-04
	100 mg	3 ml	50 u	8108-06	8113-0	06	8111-06		8109-0)6	8196-06	8115-06
	100 mg	6 ml	30 u	8108-08	8113-0	08			8109-0)8	8196-08	8115-08
	200 mg	6 ml	30 u	8108-09	8113-0	09	8111-09		8109-0)9	8196-09	8115-09
	20 mg	1 ml sans bord	96 u	8108-11	8113-	11	8111-11		8109-1	11	8196-11	8115-11
Plaque 96 puits	20 mg	2 ml		8077-96	8132-	96						
Colonnes d'Adsorption	Masse	Vol.	Qté	Silice								
	20 mg	1 ml	100 u	8163-01								
	35 mg	1 ml	100 u	8163-02								
	35 mg	3 ml	50 u	8163-03								
	50 mg	3 ml	50 u	8163-04								
	100 mg	3 ml	50 u	8163-06								
	200 mg	6 ml	30 u	8163-09								
	20 mg	1 ml sans bord	96 u	8163-11								
Colonnes	Masse	Vol.	Qté	NH2	SAX	SCX	WCX					
d'échange d'ions												
	35 mg	1 ml	100 u		8168-02	8170-02	2 8172-0	2				
	35 mg	3 ml	50 u		8168-03	0470.0						
	50 mg	3 ml	50 u		8168-04	8170-04						
	100 mg	3 ml	50 u	8165-06	8168-06	8170-00						
	50 mg	6 ml	30 u	0405.00	0400	04=0	8172-0					
	200 mg	6 ml	30 u		8168-09	8170-09						
	20 mg	1 ml sans bord	96 u	8165-11	8168-11	8170-11	l 8172-1	1				
Colonnes Spéciales	Masse	Vol.	Qté	Narc-2		Narc-1						
	25	11	100 u	8175-02								
	35 mg	1 ml	100 u	0113-02								
	35 mg 35 mg	3 ml	50 u	8175-03								
	-					8174-04	1					

8174-08

30 u

30 u

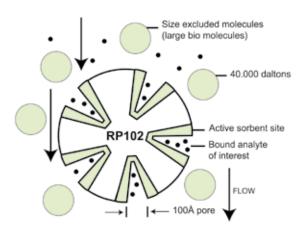
8175-09

100 mg

200 mg

6 ml

Spe-ed RP®


Les supports Spe-ed RP® sont une famille de résines polymériques sphériques, poreuses, chimiquement stables et avec de grandes surfaces spécifiques. Les biomolécules, de par leur taille, ne peuvent s'adsorber sur la surface des résines. Elles sont directement exclues laissant ainsi les sites actifs (à l'intérieur des pores) libres d'accès pour les petites molécules. Lorsqu'une colonne C18 standard ne donne pas de bons taux de récupération, remplacez la directement par une colonne Spe-ed RP®.

Limites d'exclusion Daltons :

RP101: 70 000
 RP102: 400 000
 RP103: 300 000
 RP104: 800 000

- Stable de pH 1 à 14
- Pas de silanols
- Extraction de petites drogues jusqu'aux oligonucléotides
- Excellente diffusion des fluides biologiques
- Déssalages
- Elimination d'endotoxines
- Séparation par taille des biomolécules
- Herbicides, Pesticides ...

Masse	Vol.	Qté	RP101	RP102	RP103	RP104
50 mg	1 ml	100 u	4295	4299	4296	4297
100 mg	1 ml	100 u	4201	4207	4213	4219
200 mg	3 ml	50 u	4202	4208	4214	4220
500 mg	6 ml	30 u	4204	4210	4216	4222
1 g	6 ml	30 u	4205	4211	4217	4223
1 g	12 ml	20 u	4206	4212	4218	4224

Colonnes Spe-ed RP105® Advanta

Spe-ed RP105® Advanta

La nouvelle résine polymérique RP105® Advanta modifiée chimiquement permet l'extraction des composés polaires contenus dans des matrices aqueuses.

Pour l'extraction des polaires contenus dans les eaux, les colonnes C18 et PSDVB, grâce à leur surface très hydrophobe laissent peu de possibilité de contact pour les composés polaires. Ces supports doivent être préalablement mouillés par un agent comme le méthanol pour être actifs. Si ce conditionnement n'est pas bien mené ou si la colonne sèche, alors la reproductibilité et le taux de recouvrement sont médiocres.

Les colonnes ainsi préparées sont de bons outils pour l'extraction de composés apolaires mais pas pour les polaires.

La résine du nouveau polymère des colonnes Spe-ed RP105® Advanta est chimiquement modifiée par un groupe fonctionnel polaire. La résine RP105® Advanta est facilement mouillée par l'eau et peut donc fixer les polaires organiques des matrices aqueuses.

• Les colonnes Spe-ed RP105® ne nécessitent pas d'étape de conditionnement

Applications

- Environnement
- Drogues et métabolites polaires dans les matrices aqueuses

Masse	Vol.	Qté	Réf.	
30 mg	1 ml	100 u	4261	
50 mg	1 ml	100 u	4262	
100 mg	1 ml	100 u	4263	
100 mg	3 ml	50 u	4264	
200 mg	3 ml	50 u	4265	
500 mg	6 ml	30 u	4266	

Comparatif entre une colonne C18, PSDVB et Spe-ed RP105

Masse de support : 100 mg

Echantillon: 10 ppm de Phenol, p-Cresol et nitrobenzène dans H₂O (20 ml ont été employés)

Analyse par GC/FID

Méthode: lavage 2 ml H₂O, séchage 1 mn à l'air, élution 1 ml acétate d'éthyl.

Pour C18 et PSDVB, il faut en plus conditionner par 2 ml MeOH et 2 ml $\rm H_2O$.

% de récupération	C18	PSDVB	RP105
Phénol	5 %	89 %	99 %
p-Crésol	13 %	88 %	99 %
Nitrobenzène	51 %	91 %	100 %

A.138

<u>woo</u>

Thermo

Colonnes Thermo Scientific HyperSep

Hypercarb

- Constitué à 100% de carbonne graphitisé poreux (PGC)
- PH d'utilisation entre 0 et 14
- Reproductibilité lot à lot
- Propriété de rétention forte
- S'utilise pour l'extraction ou la concentration d'échantillons

Principalement utilisé pour des matrices aqueuses environnementales ou pharmaceutiques constituées de composés planaires, polaires, ou ioniques, difficiles à traiter.

Applications: Extraction d'acide cyanurique dans l'eau potable

(source Marie Claire Hennion, ESPCI, Paris)

Support: colonnes HyperSep Hypercarb 500 mg/6 ml réf 60106-402

Conditionnement: 10 ml Méthanol, 10 ml D.I. H2O

Echantillon : ajuster le pH de l'échantillon à 3 puis percoler 250 à 500 ml sur la colonne à

5 ml/min

Séchage : quelques minutes Elution : 20 ml Méthanol

Masse	Vol.	Qté	Réf
Colonnes SP	E HyperSep Hyper	carb	
25 mg	1 mL	50 u	60106-304
50 mg	1 mL	50 u	60106-303
100 mg	1 mL	30 u	60106-302
200 mg	3 mL	30 u	60106-301
500 mg	6 mL	20 u	60106-402
1 g	6 mL	10 u	60106-403
2 g	15 mL	10 u	60106-404
Plaques SPE	HyperSep-96 Hype	ercarb	
10 mg	1 ml	1 u	60302-606
25 mg	1 ml	1 u	60302-607
50 mg	1 ml	1 u	60302-608

Retain PEP

- PSDVB modifié par un groupe fonctionnel urée
- Polymère ultra pur et fortement poreux
- PH d'utilisation entre 0 et 14
- Dédié à l'extraction de substances polaires & non polaires

Applications:

- · Composés pharmaceutiques ou substances stupéfiantes dans les fluides biologiques
- Peptides issus de plasma, sérum ou fluides biologiques
- Echantillons environnementaux

Colonnes Thermo Scientific HyperSep

Retain-CX

PSDVB modifié par un groupe fonctionnel acide sulfonique

- Polymère ultra pur et fortement poreux
- PH d'utilisation entre 0 et 14
- Dédié à l'extraction de substances basiques et neutres

Applications : extraction de substances stupéfiantes basiques et neutres

Retain-AX

PSDVB modifié par un groupe fonctionnel amine quaternaire

- Polymère ultra pur et fortement poreux
- PH d'utilisation entre 0 et 14
- Dédié à l'extraction de substances acides

Applications : extraction de THC et ses métabolites

Masse	Vol.	Qté	Réf. PEP	Réf. CX	Réf. AX				
Colonnes SPE HyperSep Retain PEP, CX, AX									
30 mg	1 mL	100 u	60107-201	60107-301	60107-401				
30 mg	3 mL	50 u	60107-202	60107-302	60107-402				
60 mg	3 mL	50 u	60107-203	60107-303	60107-403				
60 mg	6 mL	30 u	60107-208	60107-308	60107-408				
100 mg	6 mL	30 u	60107-207	60107-307	60107-407				
150 mg	6 mL	30 u	60107-211	60107-311	60107-411				
200 mg	3 mL	50 u	60107-204	60107-304	60107-404				
200 mg	6 mL	30 u	60107-212	60107-314	60107-412				
500 mg	3 mL	50 u	60107-205	60107-305	60107-405				
500 mg	6 mL	30 u	60107-206	60107-306	60107-406				
1 g	25 mL	20 u	60107-215	60107-315	60107-415				
2 g	25 mL	20 u	60107-214	60107-312	60107-414				
Planue S	PE HyperSe	n Retain Di	ED CY AY						
•		•		00000 005	00000 405				
5 mg	1 mL	1 u	60303-205	60303-305	60303-405				
10 mg	1 mL	1 u	60303-206	60303-306	60303-406				
30 mg	1 mL	1 u	60303-207	60303-307	60303-407				
60 mg	1 mL	1 u	60303-208	60303-308	60303-408				

Thermo

Colonnes Thermo Scientific HyperSep

Silice hydrophobe

Masse	Vol.	Qté	Réf. C18	Réf. C8	Réf. Phényl
50 mg	1 mL	100 u	60108-390	60108-391	60108-516
100 mg	1 mL	100 u	60108-302	60108-392	60108-386
200 mg	3 mL	50 u	60108-303	60108-393	60108-387
500 mg	3 mL	50 u	60108-304	60108-309	60108-388
500 mg	6 mL	30 u	60108-305	60108-394	60108-389
1 g	6 mL	30 u	60108-301	60108-427	60108-517
2 g	15 mL	20 u	60108-701	60108-704	60108-707
5 g	25 mL	20 u	60108-702	60108-705	60108-708
10 g	75 mL	10 u	60108-703	60108-706	60108-709

Silice hydrophile

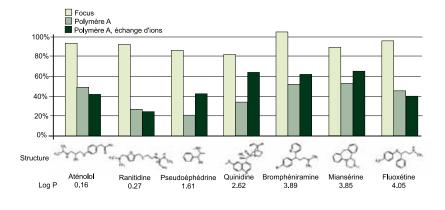
Masse	Vol.	Qté	Réf. Silice	Réf. Florisil	Réf. NH2	Réf. Cyano	Réf. Diol
50 mg	1 mL	100 u	60108-409	60108-402	60108-424	60108-746	60108-571
100 mg	1 mL	100 u	60108-317	60108-403	60108-364	60108-745	60108-572
200 mg	3 mL	50 u	60108-410	60108-404	60108-425	60108-747	60108-573
500 mg	3 mL	50 u	60108-315	60108-405	60108-518	60108-748	60108-574
500 mg	6 mL	30 u	60108-411	60108-500	60108-519	60108-749	60108-575
1 g	6 mL	30 u	60108-426	60108-431	60108-432	60108-750	60108-576
2 g	15 mL	20 u	60108-710	60108-735	60108-738	60108-751	60108-755
5 g	25 mL	20 u	60108-711	60108-736	60108-739	60108-752	60108-756
10 g	75 mL	10 u	60108-712	60108-737	60108-740	60108-753	60108-757

woo ≌interchim

A.142

Colonnes SPE et plaques FOCUS

Les colonnes SPE Focus sont une solution universelle pour l'extraction des médicaments dans les matrices biologiques. Pour les médicaments polaires et non polaires, des résultats vraiment quantitatifs sont obtenus en une seule méthode universelle. Les rendements sont supérieurs à 80% pour un grand nombre d'applications, sans aucune mise au point.

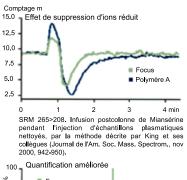

- Résultat correct dès la première extraction
- Solution universelle

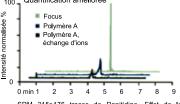
La capacité de Focus à retenir des analytes polaires permet d'employer un rinçage puissant sans pour autant perdre du produit. Le solvant de lavage peut contenir jusqu'à 20% d'acétonitrile et de méthanol. L'élimination des effets de matrice permet d'améliorer la quantification des analytes polaires en conduisant à une forme de pic plus gaussienne et un meilleur rapport signal/bruit. La qualité des résultats est nettement améliorée pour les faibles concentrations.

Une évaluation par un laboratoire pharmaceutique indépendant révèle que Focus surpasse les produits concurrents en termes de propreté et de rendement pour une large gamme de médicaments. Focus représente le choix parfait pour extraire simultanément des analytes polaires et apolaires. Il se révèle particulièrement efficace dans les études de métabolisme et de pharmacocinétique, puis dans les études cliniques, pour extraire quantitativement le produit original et ses métabolites à des concentrations extrêmement faibles.

Description	Masse	Vol.	Qté	Réf.
Colonnes SPE Focus	10 mg	1 ml	100 u	A5106010
Colonnes SPE Focus	20 mg	3 ml	100 u	A5306021
Colonnes SPE Focus	60 mg	3 ml	100 u	A5306022
Plaque 96 puits Focus	10 mg		1 u	A59660
Plaque de collection 96 puits 1 ml			10 u	A696001000
Couvercle perçable pour plaque de collection			10 u	A8961007
Couvercle de fermeture Duo Seal			10 u	A8961008
Manifold 96 puits CaptiVac			1 u	A796
Adaptateur pour manifold Porvair et Versaplate			1 u	A596AD

Focus conduit aux rendements les plus élevés pour les médicaments polaires et non polaires





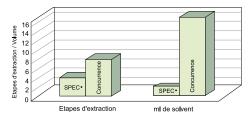
Intensité normalisée %	Focus ■ Polymère A	Ma		Mp.
Ċ	balayages 500	1000	1500	2000
d	IC 500 à 2200. F e bovins selon abricant.			

٠,١

100 Extraits plus propres

SRM 315>176 traces de Ranitidine. Effet de la propreté de l'échantillon sur la forme des pics au voisinage de to.

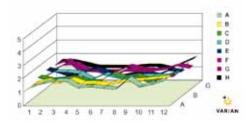
Plaques 96 puits SPEC


SPEC accélère la préparation des échantillons en grand nombre par des méthodes validées. Ces plaques 96 puits intègrent une technologie permettant d'assurer fiabilité et haut débit.

L'extraction est réalisée sur un disque de fibres de verre imprégné de silice pour lequel le volume d'élution minimal est de l'ordre de 75 µl.

Ce volume d'élution très faible permet d'atteindre des limites quantitatives basses rarement égalées et le rendement est nettement augmenté.

Ces extraits hautement concentrés peuvent être directement injectés en couplage LC/MS/MS.


- Volume d'élution faible
- Grande sensibilité
- Réduction des effets de matrice
- Moins d'étapes et moins de solvant

Le faible volume d'élution qui caractérise SPEC accélère le processus et réduit la consommation de solvant.

Les produits SPEC sont fabriqués selon des exigences de qualité et de contrôle sévères afin d'éliminer les contaminants qui engendrent les effets suppresseurs d'ions. Les caractéristiques de débit sont exceptionnelles.

Leur utilisation sur un système automatique donne un débit très homogène à travers les 96 puits.

Description	Charge	Qté	Réf.
C2	15 mg	1 u	A59601
C8	15 mg	1 u	A59602
C18	15 mg	1 u	A59603
SCX	15 mg	1 u	A59604
SAX	15 mg	1 u	A59605
CN	15 mg	1 u	A59606
NH2	15 mg	1 u	A59607
PH	15 mg	1 u	A59610
MP1 (apolaire/SCX)	15 mg	1 u	A59611
C18AR (résistant aux acides)	15 mg	1 u	A59619
C18AR	30 mg	1 u	A5960330
DAU	15 mg	1 u	A596DAU
MP3 (faiblement polaire/SCX)	15 mg	1 u	A59620
Plaque de développement de méthode	15 mg	1 u	A59630
Plaque de collection 96 puits		10 u	A696001000
Couvercle de plaque de collection, perçable		10 u	A8961007
Joint Duo Seal de fermeture de plaque		10 u	A8961008
Manifold 96 puits Captivac		1 u	A796

Plaques 96 puits SPEC

Cartouches Bond Elut Jr

La gamme de produit d'extraction Agilent s'est récemment étoffée par l'introduction des nouvelles cartouches Bond Elut Jr.

Les cartouches Bond Elut Jr sont remplies avec le même support haute qualité Bondesil. Elles utilisent le même polypropylène grade médical et les mêmes frittés polyéthylène que les colonnes standards Bond Elut.

- Fiables et parfaitement reproductibles
- Disponibles en 500 mg et 1 g
- Compatibles avec les stations automatiques MilliLab, elles peuvent être utilisées comme une simple seringue à embout luer.

Applications

Toxicologie, suivi clinique, pharmaceutique...

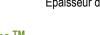
Matériau	Masse	Qté	Réf.
Phases hydrophobes			
C18	500 mg	100 u	12162028B
C18	1000 mg	100 u	12166001B
C8	500 mg	100 u	12162029B
C8	1000 mg	100 u	12166002B
C18OH	500 mg	100 u	12162046B
Phases hydrophiles			
CNU	500 mg	100 u	12162035B
Si	500 mg	100 u	12162037B
Si	1000 mg	100 u	12166008B
SCX	500 mg	100 u	12162040B
SCX	1000 mg	100 u	12166011B
NH ₂	500 mg	100 u	12162041B
NH ₂	1000 mg	100 u	12166012B
Al-A	500 mg	100 u	12162047B
Al-A	1000 mg	100 u	12166043B
Al-B	500 mg	100 u	12162048B
AI-B	1000 mg	100 u	12166044B
Al-N	500 mg	100 u	12162049B
AI-N	1000 mg	100 u	12166045B
FI	500 mg	100 u	12162050B
FI	1000 mg	100 u	12166014B
Echange d'ions			
PSA	500 mg	100 u	12162042B
PSA	1000 mg	100 u	12166050B
SAX	500 mg	100 u	12162044B
SAX	1000 mg	100 u	12166013B
Spéciales			
Celite	500 mg	100 u	12162100B

Extraction sur phase solide

Disques, colonnes et plaques Empore

dyneon

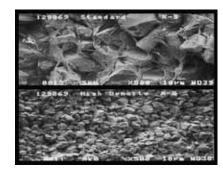
Membranes Empore[™]


La technologie de fabrication des membranes Empore™ est l'une des plus sophistiquée existante pour les produits de préparation d'échantillons. Les particules de silice ou de polymère sont fortement compactées et intégrées dans une matrice inerte de Teflon® (90% d'adsorbant, 10% de PTFE).

Les avantages en terme d'utilisation sont multiples :

- La limitation des chemins préférentiels apporte une parfaite percolation des échantillons sur toute la surface de la membrane.
- Les membranes sont denses et uniformes permettant des résultats d'extraction plus reproductibles.
- Les extraits sont propres et limpides sans relargage de particules et peuvent être injectés directement en LC/MS.
- Les faibles volumes d'élutions entraînent l'élimination de l'étape d'évaporation et donc un gain de temps important dans la préparation des échantillons.

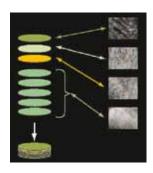
- La Densité Standard (SD)
 Particules de 40 μm
 Porosité de la membrane de 0,2 μm
 Epaisseur de 0,75 mm
- La Haute Densité (HD)
 Particules de 8 12 μm
 Porosité de la membrane de 2,5 μm
 Epaisseur de 0,5 mm



Ces disques ont été développés pour permettre le passage d'importants volumes d'échantillons à fort débit en garantissant une parfaite adsorption des analytes. Leur application principale est aujourd'hui l'extraction des polluants organiques dans diverses matrices aqueuses (eaux de rivière, boissons, ...). Cette technologie permet de s'affranchir des problèmes de l'extraction liquide-liquide (émulsion, temps d'évaporation important, perte des composés volatils, reproductibilité des résultats...).

Quelques méthodes EPA approuvées

Disques Empore™ 47 et 90 mm	Méthodes EPA	Composés cibles	Méthodes EPA	Composés cibles
C8	549.1	Diquat & Paraquat		
C18	506	Phthalates et adipates	554	Composés carbonés
	507	Pesticides azotés et phosphorés	555	Acides Chlorés
	508.1	Pesticides azotés et organochlorés	608	Pesticides
	525.2	Organiques semi volatils	1613B	TCDD
	550.1	HAP (hydrocarbures polyaromatiques)	8061	Esters phtaliques
	553	Benzidines et Pesticides azotés		
Echange d'anions	548.1	Endothall		
SR	552.1	Acides Halogénés & Dalapon		
SDB	515.2	Herbicides chlorés		
(styrène divynylbenzene)	553	Benzidines et Pesticides azotés		
Oil & Grease	1664	huiles & graines, TPH		
Chelating		Métaux		
Strontium		Strontium-90		
Radium		Radium-226 & Radium-228		
Technetium		Technetium-99		



A.145

Disques, colonnes et plaques Empore

Greffées C18 ou C8, les membranes hydrophobes Empore™ sont étudiées pour l'extraction de composés apolaires et moyennement polaires dans l'eau. Les membranes échangeuses d'ions (anions et cations) permettent des purifications par échange ionique de composés acides ou basiques.

Stables au pH, les membranes XDB XC sont utilisées pour les analytes polaires et possèdent une plus grande capacité d'adsorbtion que les silices. Les membranes Chelating Empore™ sont constituées d'un polymère SDVB fonctionalisé avec un groupe acide iminodiacétique pour la concentration et purification de cations dans les eaux ou dans les fluides biologiques.

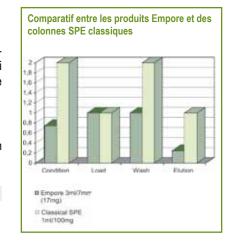
Descriptif	Diamètre	Réf.	Qté
Disques C8	47 mm	2214	20 u
Disques C8	90 mm	2314	10 u
Disques C18	47 mm	2215	20 u
Disques C18	90 mm	2315	10 u
Disques SDB-XC	47 mm	2240	20 u
Disques SDB-XC	90 mm	2340	10 u
Disques SDB-RPS	47 mm	2241	20 u
Disques SDB-RPS	90 mm	2341	10 u
Disques Anion-SR	47 mm	2252	20 u
Disques Anion-SR	90 mm	2352	10 u
Disques Oil & Grease	47 mm	2270	20 u
Disques Oil & Grease	90 mm	2370	10 u
Disques Chelating	47 mm	2271	20 u
Disques Carbon	47 mm	2272	20 u
Disques Carbon	90 mm	2372	10 u
Disques Cation	47 mm	2251	10 u
Disques Strontium 90	47 mm	3290	20 u
Disques Radium 226, 228	47 mm	3291	20 u
Disques Technetium 99	47 mm	3292	20 u

Les disques Empore™ 47 mm et les colonnes 10 mm/6 ml sont compatibles sur l'automate à pression positive Tekmar Autotrace.

Extraction sur phase solide

Disques, colonnes et plaques Empore

Colonnes d'extraction Empore™


Les membranes utilisées pour les colonnes et plaques sont fabriquées sur la même technologie que les disques d'extraction Empore™. Pour éviter le colmatage des membranes et ainsi permettre une meilleure adsorbtion des analytes, un préfiltre en polypropylène à gradient de porosité (de 12 à 2 µm) a été rajouté dans chaque contenant.

Spécifications

Les volumes d'échantillons à utiliser dépendent de la nature de l'échantillon, de sa concentration en analyte et de la capacité d'adsorbtion du support.

Diamètre	Vol.	Masse d'adsorbant	Volume Elution	
4 mm	1 ml	4 mg	100 µl	
7 mm	3 ml	13 mg	250 µl	
10 mm	6 ml	23 ma	400 ul	

Descriptif	Diamètre / Vol.	Réf.	Qté	
Colonnes C2-HD	4 mm / 1 ml	4111-HD	100 u	
	7 mm / 3 ml	4211-HD	50 u	
	10 mm / 6 ml	4311-HD	30 u	
Colonnes C2-SD	4 mm / 1 ml	4111-SD	100 u	
	7 mm / 3 ml	4211-SD	50 u	
	10 mm / 6 ml	4311-SD	30 u	
Colonnes C8-HD	4 mm / 1 ml	4114-HD	100 u	
Colonnes C8-SD	4 mm / 1 ml	4114-SD	100 u	
	7 mm / 3 ml	4214-SD	50 u	
Colonnes C18-HD	4 mm / 1 ml	4115-HD	100 u	
	7 mm / 3 ml	4215-HD	50 u	
	10 mm / 6 ml	4315-HD	30 u	
Colonnes C18-SD	4 mm / 1 ml	4115-SD	100 u	
	7 mm / 3 ml	4215-SD	50 u	
	10 mm / 6 ml	4315-SD	30 u	
	10 mm / 6 ml	4340-SD	100 u	
Colonnes MPC-HD	4 mm / 1 ml	4130-HD	100 u	
(Mixed Phase Cation)	7 mm / 3 ml	4230-HD	50 u	
	10 mm / 6 ml	4330-HD	30 u	
Colonnes MPC-SD	4 mm / 1 ml	4130-SD	100 u	
(Mixed Phase Cation)	7 mm / 3 ml	4230-SD	50 u	
	10 mm / 6 ml	4330-SD	30 u	
Colonnes SDB-XC	4 mm / 1 ml	4140	100 u	
	7 mm / 3 ml	4240	50 u	
	10 mm / 6 ml	4340	30 u	
Colonnes SDB-RPS	4 mm / 1 ml	4141	100 u	
	7 mm / 3 ml	4241	50 u	
	10 mm / 6 ml	4341	30 u	
Colonnes UR	7 mm / 3 ml	4245-SD	50 u	

A.147

Préparation d'échantillons

Disques, colonnes et plaques Empore

Plaques d'extraction Empore™

Utilisées pour l'automatisation de la purification ou pour l'extraction d'un grand nombre d'échantillons en série, les plaques 96 puits Empore™ sont disponibles en 1,2 et 2,5 ml. L'adsorbant d'extraction est constitué d'un pré-filtre à gradient de porosité en polypropylène suivi d'une membrane intégrant des particules de 40 μm.

Particulièrement adaptées aux analyses de fluides biologiques lors des étapes de l'élaboration de médicaments, ces plaques Empore™ sont des produits de qualité reproductibles et répétables permettant :

- La réduction des volumes de solvants
- Des volumes d'élutions faibles
- Une percolation rapide des échantillons
- Compatibilité avec les appareils Perkin-Elmer (Multiprode II), Tomtec (Quadra 96),
 Tecan (Genesis), Beckman (Biomeck), Gilson (Apec XL4), Zinsser (Speedy).

Appareil à vide pour plaques 96 puits		6015	1 u
Accessoires			
Filter Plate PPT	2.5 ml	6360	1 u*
Plaques 96 puits	1.2 ml	6065	1 u*
Pour la filtration de précipité de prot	eines		
Universal Resin (URP)	2.5 ml	6345 -SD	1 u*
Plaques 96 puits	1.2 ml	6045 -SD	1 u*
MPC-SD (Mixed Phase Cation)	2.5 ml	6330-SD	1 u*
Plaques 96 puits	1.2 ml	6030-SD	1 u*
C18-SD	2.5 ml	6315-SD	1 u*
Plaques 96 puits	1.2 ml	6015-SD	1 u*
C8-SD	2.5 ml	6314-SD	1 u*
Plaques 96 puits	1.2 ml	6014-SD	1 u*
Descriptif	Vol.	Réf.	Qté

^{*} Tarif spécial pour l'achat de 12 plaques

Technical Tip

Méthodes URP

- Conditionnement : 100 µL Méthanol 250 µL H₂O / Tampon
- Dépôt d'échantillons : Echantillons dilués H₂O / tampon
- Lavage: 500 µL H₂O (250-500 µL Méthanol / H₃O-10/90)
- Elution: 100-150 μL Solvant organique (2 x 50 μL / 2 x 75 μL) (+ 100-150 μL NH,Ac)

A.148

Les plaques de collections sont disponibles à la page A. 118.

Extraction sur phase solide

Disques SPEC

Agilent Technologies

Les colonnes d'extraction avec disques imprégnés représentent certainement l'évolution la plus intéressante de ces dernières années en matière de préparation d'échantillon.

Avantages

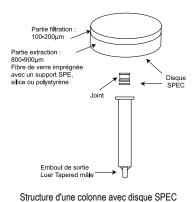
- Système de filtration double couche haute performance, filtration des particules des échantillons, débits élevés et reproductibles
- Filtre fibre de verre, taux d'extractibles extrêmement faible
- Très faible volume mort : < 100 μl, faible volume de réactifs (200-500 μl), large gamme de volume d'échantillons (200-3000 μl)</p>
- Meilleur process, moins d'étapes, meilleure diffusion, réduction des volumes de solvants

Caractéristiques

- Les supports des colonnes-disques ont été choisis pour donner le maximum de sélectivité avec le composé d'intérêt et limiter les interactions avec les interférants.
- La capacité des disques SPEC est d'environ 5 à 10 % de la masse du support soit par exemple ~3,5 mg pour un disque de 35 mg.
 Les variations de capacité dépendent de l'affinité du support pour le composé d'intérêt.
 Pour les échangeurs d'ions, elle est de 0.6 meq/g.
- L'efficacité de la technologie des disques permet de réduire les volumes de solvant. Les volumes de conditionnement, lavage et élution sont de l'ordre de 500 µl. Si les limites de détection le permettent, on peut également réduire le volume de l'échantillon.
- 4. Colonnes de 3 ml : les débits de 1 à 5 ml/min. Colonnes de 10 ml : les débits de 2 à 10 ml/min. La diminution des débits peut être critique durant la phase de dépôt et d'élution de l'échantillon. Pour les échangeurs d'ions, les débits sont plus faibles : 2 ml/min pour 3 ml et 4 ml/min pour 10 ml.
- Les disques sont inertes vis à vis de l'ensemble des solvants organiques. Ils sont stables de pH 2 à 7.5. Pour de faibles temps de passage, on peut étendre entre pH : 1-10.
 Sous des conditions très acides, le C18AR doit être préféré au C18 standard.
- Le vide classique est compris entre 7 et 17 KPa.
 Pour certaines étapes, addition et élution, un vide plus faible est conseillé.
 Par contre l'étape de séchage nécessite un vide plus poussé.

Colonnes d'extraction

Description	Masse	Vol.	Réf.	Qté
SPEC C2	30 mg	3 ml	A5320130	100 u
SPEC C8	15 mg	3 ml	A5320220	100 u
	•			
SPEC C8	30 mg	3 ml	A5320230	100 u
SPEC C18	15 mg	3 ml	A5320320	100 u
SPEC C18	30 mg	3 ml	A5320330	100 u
SPEC C18AR	35 mg	10 ml	A5021935	100 u
SPEC C18AR	15 mg	3 ml	A5321920	100 u
SPEC C18AR	30 mg	3 ml	A5321930	100 u
SPEC C18AR/MP3	70 mg	10 ml	A5022570	100 u
SPEC DAS	35 mg	3 ml	A532DAS	100 u


A.149

Préparation d'échantillons

Disques SPEC

Description	Masse	Vol.	Réf.	Qté
SPEC DAU	70 mg	3 ml	A532DAU	100 u
SPEC MP1	45	10	A 500440 5	100
	15 mg	10 ml	A5021135	100 u
SPEC MP1	30 mg	10 ml	A5021170	100 u
SPEC MP1	35 mg	3 ml	A5321120	100 u
SPEC MP1	15 mg	3 ml	A5321130	100 u
CDEC MD3	20 ma	10 ml	A E02202E	100
SPEC MP3	30 mg	10 ml	A5022035	100 u
SPEC MP3	35 mg	3 ml	A5322020	100 u
SPEC MP3	70 mg	3 ml	A5322030	100 u
SPEC NH2	20 ma	10 ml	A5020770	100 u
	30 mg			
SPEC NH2	35 mg	3 ml	A5320720	100 u
ODEO DU	05	01	A 5004000	400
SPEC PH	35 mg	3 ml	A5321020	100 u
SPEC PH	15 mg	3 ml	A5321030	100 u
SPEC SAX	30 mg	10 ml	A5020535	100 u
	· ·			
SPEC SAX	35 mg	3 ml	A5320520	100 u
SPEC SAX	15 mg	3 ml	A5320530	100 u

Disques d'extraction

Description	Diamètre	Réf.	Qté
SPEC C8	47 mm	A74702	24 u
SPEC C18AR DISC	47 mm	A74819	20 u
SPEC ENVIRO DISC MANIFOLD		A712	1 u
SPEC DISC HOLDER	47 mm	A713	1 u
SPEC 1 LITER FLASK		A714	1 u

Extraction sur phase solide

Disques d'extraction Speedisk

Les disques d'extraction brevetés BAKERBOND Speedisk® constituent le choix le plus pertinent pour les volumes d'échantillon de 200 ml à 2L. Ils sont préassemblés pour l'extraction en milieu aqueux. La technologie laminaire permet une très grande capacité de filtrage et une plus grande capacité d'interaction et d'échange entre micro particules et analytes.

La conception BAKERBOND Speedisk® élimine totalement le colmatage et assure un débit très élevé (jusqu'à 200 ml/min), même en présence de particules en suspension.

Applications:

- Méthode d'Analyse Multiresidus des Triazines, des pesticides Organo-chlorés et Poly-aromatiques, Hydrocarbures dans l'eau potable.
- Phénols en phase aqueuse (méthode SW 846, 8041 ou EPA 528).
- Extraction des composés pharmaceutiques dans l'eau.
- Extraction des aromatiques polycycliques, hydrocarbures Aromatiques dans l'eau potable.
- Extraction des phtalates et esters d'adipate dans l'eau potable.

Disques d'extraction Speedisk

Adsorbant	Caractérisiques	EPA méthodes	Diamètre	Réf.	Qté
Octadecyl (C18)	Pour des échantillons d'eaux contenant des composés apolaires & modérément polaires	EPA Methods 500 Series, 608 SW 846/3535	50 mm	8055-06	20 u
Octadecyl (C18) - High capacity	Pour des échantillons d'eaux contenant des composés apolaires & modérément polaires	EPA Methods 500 Series, 608 SW 846/3535	50 mm	8055-07	20 u
C18 XF (Extra Filter)	Pour des matrices aqueuses difficiles	EPA Methods 608,846	50 mm	8056-06	20 u
Octyl (C8)	Pour des matrices contenant des composés apolaires & modérément polaires	EPA Method 549.1 - Diquat & Paraquat	50 mm	8057-06	20 u
SAX (Echange d'anions forts)	Pour des échantillons d'eaux contenant des composés faiblement acides	EPA Method 552.1 - composés acides chlorés	50 mm	8058-06	20 u
Oil & Grease	Pour des matrices contenant des hydrocarbures apolaires & modérément polaires	EPA Method 1664, Rev. A.	50 mm	8060-06	20 u
C18 PolarPlus	Pour des matrices aqueuses contenant des composés apolaires & modérément polaires	Urées, phenols, acides organiques,	50 mm	8061-06	20 u
H ₂ O Phobic DVB (Divinylbenzene)	Pour des matrices contenant des composés apolaires & modérément polaires	EPA Method 515.2 - composés acides chlorés	50 mm	8068-06	20 u
H ₂ O Phobic DVB (Divinylbenzene)	Pour des matrices contenant des composés apolaires & modérément polaires	EPA Method 515.2 - composés acides chlorés	50 mm	8068-07	20 u
H ₂ O Phillic DVB (Divinylbenzene)	Pour des matrices contenant des composés apolaires & polaires	SW 846	50 mm	8072-06	20 u
H ₂ O Phillic DVB - High capacity	Pour des matrices contenant des composés apolaires & polaires	SW 846	50 mm	8072-07	20 u
-	Pour des matrices de type "Huiles et Graisses" contenant des composés apolaires & polaires	EPA Method 8270	50 mm	8082-06	20 u

Disques d'extraction Speedisk

Description	Réf.	Qté
Station d'extraction Speedisks		
Station de traitement 6 postes étendue avec 6 réservoirs 1L	8095-06	1 u
Adaptateur Speedisk		
Adaptateur souple pour prélèvement de l'échantillon vers le disque d'extraction	8099-06	6 u
Adaptateur pour connexion des disques au flacon à vide	8070-01	1 u
Bague de raccord pour joint externe conique	8100-06	6 u
Station d'extraction Speedisks	Réf.	Qté
Réservoirs Speedisk		
Réservoirs de 185 ml ou adaptateur pour bouteille verre d'1L retournée	8097-06	6 u
Réservoirs en verre d'1L qui s'adapte directement à un disque d'extraction	8098-01	1 u
Chambre de prélèvement incluant le flacon d'échantillon	8096-02	2 u
Flacons de prélèvement	8102-01	100 u
Plateau d'échantillons 4 bouteilles verre d'1L	8101-01	1 u
Adaptateur 70 mm	8102-04	4 u

Station d'extraction Speedisk® 6 postes

Disgues d'extraction SuPErScreen

Orochem Technologies a développé une technique propriétaire de fabrication de disques d'extraction pour la préparation d'échantillons en phase solide. Ils sont constitués de particules de silice haute capacité enchâssées dans un disque en fibre de verre.

L'élimination des "fines" et le faible volume de solvant nécessaire permet l'obtention d'extraits plus propres sans étape d'évaporation avant injection. Les disques SuPErScreen sont fabriqués à partir de fibres de verre de différentes longueurs. Ceci augmente notablement la porosité de la matrice. La distribution homogène de la silice à travers l'épaisseur du disque est la garantie d'une parfaite reproductibilité.

Pour un réservoir de 3 ml, un disque de 8 mm contient ~ 13,8 mg de silice.

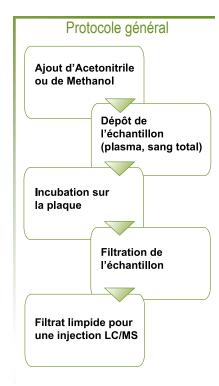
Applications

Préparation d'échantillons par extraction en phase solide dans le développement médicamenteux/pharmaceutique, analyse pharmaceutique, pharmacocinétique et applications biotechnologiques.

Diagua	Vol.	Réf.	Qté
Disque Phases inverses	VOI.	rei.	Q(e
	41	CVC24CC	400
C2	1 ml	SYC21CC	100 u
C2	3 ml	SYC23CC	100 u
C8	1 ml	SYC81CC	100 u
C8	3 ml	SYC83CC	100 u
C18	1 ml	SYC181CC	100 u
C18	3 ml	SYC183CC	100 u
PH	1 ml	SYPH1CC	100 u
PH	3 ml	SYPH3CC	100 u
CH	1 ml	SYCH1CC	100 u
CH	3 ml	SYCH3CC	100 u
Phases polaires			
Silice	1 ml	SYSI1CC	100 u
Silice	3 ml	SYSI3CC	100 u
Diol	1 ml	SYDI1CC	100 u
Diol	3 ml	SYDI3CC	100 u
CN	1 ml	SYCN1CC	100 u
CN	3 ml	SYCN3CC	100 u
NH ₂	1 ml	SYNH21CC	100 u
NH ₂	3 ml	SYNH23CC	100 u
Phases mode mixte et échange d'ions			
SAX	1 ml	SYSAX1CC	100 u
SAX	3 ml	SYSAX3CC	100 u
SCX	1 ml	SYSCX1CC	100 u
SCX	3 ml	SYSCX3CC	100 u
SCX	1 ml	SYSAXSCX1CC	100 u
SCX	3 ml	SYSAXSCX3CC	100 u
C8SCX	1 ml	SYC8SCX1CC	100 u
C8SCX	3 ml	SYC8SCX3CC	100 u

Plaques de filtration Protein Crash Ruby Pro

Les plaques de filtration Protein Crash Orochem permettent une préparation d'échantillon simple, rapide et efficace.


Le gradient de porosité des frittés employés est optimisé pour éliminer efficacement les protéines précipitées sans colmatage.

La precipitation des protéines peut s'effectuer in-situ à l'intérieur des puits limitant ainsi les étapes de traitement. Les protéines précipitées sont éliminées par filtration ce qui réduit les étapes de transfert de l'échantillon, en éliminant les étapes de centrifugation.

Technologie de filtration unique

- Rapide
- Automatisation aisée
- ▶ Faible consommation de solvant

Description	Réf.	Qté
Protein Crash 96 puits 2 mL / 0.2 μm	OC21PPT20-1	1
Protein Crash 96 puits 2 mL / 0.2 μm	OC21PPT20-5	5
Protein Crash 96 puits 2 mL / 0.2 μm	OC21PPT20-10	10
Protein Crash 96 puits 2 mL / 0.2 μm	OC21PPT20-25	25
Protein Crash 96 puits 2 mL / 0.2 µm	OC21PPT20-50	50
Protein Crash 96 puits 1 mL / 0.2 μm	OMNPPT20-1	1
Protein Crash 96 puits 1 mL / 0.2 µm	OMNPPT20-5	5
Protein Crash 96 puits 1 mL / 0.2 µm	OMNPPT20-10	10
Protein Crash 96 puits 1 mL / 0.2 µm	OMNPPT20-25	25
Protein Crash 96 puits 1 mL / 0.2 µm	OMNPPT20-50	50

Disques et cylindres d'extraction MonoTrap™

Les produits MonoTrap™ GL Sciences ont été élaborés pour l'extraction, l'enrichissement, la concentration ou le screening de substances polaires ou apolaires, volatiles ou plus lourdes, dans des échantillons liquides, solides ou gazeux.

Les MonoTrap™ se présentent comme une alternative, reproductible et peu onéreuse, aux techniques d'adsorption et d'extraction par SPME (Solid-Phase MicroExtraction) ou SBSE (Stir Bar Sorptive Extraction).

MonoTrap™, Monolithic Material Sorption Extraction (MMSE)

Technologie MonoTrap™

- Silice monolithique* de haute pureté
- Réseau poreux uniforme tridimensionnel
- Surface spécifique de 150 m²/g

Avantages

- Compatible avec des matrices liquides, solides, gazeuses
- Extraction d'un large panel de substances
- Équilibre d'adsorption rapide
- Taux d'adsorption élevé
- Prêt à l'emploi, aucun conditionnement avant utilisation
- Développement de méthode simple & rapide

Les produits MonoTrap™

- Extraction par solvant

Type "Disques"

- Diamètre 10 mm
- Épaisseur 1 mm
- Orifice central de 1 mm
- DSC18 : monolithe greffé C18 end capped
- DCC18: monolithe greffé C18 end capped et contenant du charbon actif

Type "Cylindres"

- Diamètre 2,9 mm
- Hauteur 5 mm
- Orifice central de 1 mm
- RSC18 : monolithe greffé C18 end capped
- RCC18 : monolithe greffé C18 end capped et contenant du charbon actif

- Extraction par Désorption Thermique

Type "Cylindres"

- Diamètre 2,9 mm
- Hauteur 10 mm
- Orifice central de 1 mm
- ▶ RSC18TD : C18 end capped
- ▶ RGC18TD : C18 end capped + carbone graphité
- RGPSTD: PDMS (polydimethylsiloxane) + carbone graphité

^{*}technologie monolithique Merck, Darmstadt, Allemagne

Disques et cylindres d'extraction MonoTrap™

G 6L Sciences Inc.

Applications MonoTrap™

Parfumerie & Cosmétique

- Analyses de substances odorantes volatiles
- Analyses de composés en solution

Hygiène alimentaire

- Substances odorantes dans les fruits & légumes
- Micro-polluants organiques dans les aliments
- Étude de dégradation des aliments

Environnement

- Analyse de l'air
- Composés organiques volatiles dans divers matériaux solides (tissus, plastiques de voitures, moquettes, papiers, ...)
- Micro polluants organiques dans les eaux
- Traces d'hydrocarbures dans des matrices brûlées

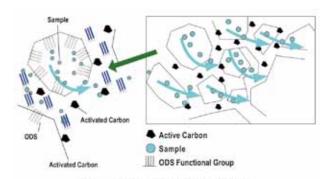


Illustration of adsorption by MonoTrap™

Choisir son Monotrap™

Description	Type	Adsorbant	Charbon actif	Applications
MonoTrap DSC18	Disque	Silice Monolithique C18	non	Composés hydrophobes (moyen et haut point d'ébullition)
MonoTrap RSC18	Cylindre	Silice Monolithique C18	non	
MonoTrap RSC18TD	Cylindre	Silice Monolithique C18	non	
MonoTrap DCC18	Disque	Silice Monolithique C18	oui	Composés polaires ou hydrophobes (bas et moyen point d'ébullition)
MonoTrap RCC18	Cylindre	Silice Monolithique C18	oui	
MonoTrap RGC18TD	Cylindre	Silice Monolithique C18	carbone graphité	
MonoTrap RGPSTD	Cylindre	PDMS (polydimethylsiloxane)	carbone graphité	Composés polaires ou hydrophobes (bas et très haut point d'ébullition)

Principe de fonctionnement

Les MonoTrap™ sont prêts à l'emploi, aucune étape de conditionnement n'est nécessaire avant leur utilisation. La mise en œuvre de la technique est simple et rapide.

Préparation d'échantillons

Disques et cylindres d'extraction MonoTrap™

MonoTrap™, une mise en oeuvre simple en 2 étapes :

Etape 1 > MonoTrap™: mise en oeuvre, adsorption

Les disques ou cylindres MonoTrap™ s'utilisent :

- En espace de tête pour un échantillon liquide ou solide (Head Space Gas Sampling)
- Par contact direct d'un liquide ou d'un solide (Stirring Samplig)
- Directement inséré dans un sac de prélèvement (Passive Sampling)

Head Space Gas Sampling

Réaliser le montage du disque ou du cylindre sur le MT Holder, insérer le montage à travers le septum et le positionner en espace de tête.

Stirring Sampling

Insérer le MonoTrap™ dans le flacon en contact direct avec l'échantillon liquide puis

Passive Sampling

Utiliser un sac de prélèvement spécifique* Tedlar[®] et positionner le MonoTrap™ en évitant tout contact avec l'échantillon.

Sacs de prélèvements : Voir page A. 159.

Etape 2 > MonoTrap™: mise en oeuvre, extraction & concentration

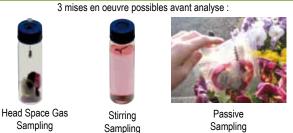
MonoTrap™: mise en oeuvre, extraction par solvant

Introduire 200 µI de solvant d'extraction dans le MT Extract.

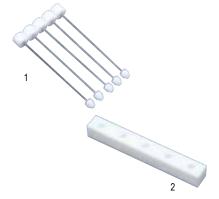
Insérer le MT Extract dans le col du flacon préalablement rempli avec de l'eau puis passer au bain ultra-sons.

Extraction des types "cvlindres"

Introduire le "Rod Type" $MonoTrap^{TM}$ dans un insert de 200 µl contenant le solvant d'extraction.


Les flacons vissant standards 12 x 32 mm permettant l'automatisation sur la plupart des passeurs pour échantillons.

MonoTrap™: mise en oeuvre, extraction par Désorption Thermique



Insertion du MonoTrap™ dans le tube de Désorption Thermique adapté à l'appareillage

Analyse GC ou GC/MS

Disques et cylindres d'extraction MonoTrap™

GL Sciences Inc.

MonoTrap™

Туре	Description	Réf.	Qté
Disk Type	MonoTrap™ DSC18	1050-71101	50 unités
Disk Type	MonoTrap™ DCC18 (ODS + Charbon actif)	1050-72101	50 unités
Rod Type	MonoTrap™ RSC18	1050-71201	50 unités
Rod Type	MonoTrap™ RCC18 (ODS + Charbon actif)	1050-72201	50 unités

MonoTrap™ Start UP-KIT

Description	Réf.	Qté
MT Holder (1)	1050-79001	5 pièces
MT Stand (2)		1 pièce
MT Extract Cup with vial 20 ml (3)		5 pièces
Clean Pin Hole septum with vial 40 ml (4)		5 pièces
200 µm glass insert Flat bottom (5)		40 pièces
MonoTrap DSC18, RSC18, DCC18, RCC18 (6)		20 pièces

HS-MT-Sampling KIT


Description	Réf.	Qté
MT Holder (1)	1050-79002	5 pièces
MT Stand (2)		1 pièce
MT Extract Cup with vial 20 ml (3)		5 pièces

Description	Réf.	Qté
MT Holder (1)	1050-79003	5 pièces
MT Stand (2)	1050-79004	1 pièce
MT Extract Cup with vial 20 ml (3)	1050-79005	5 pièces
Clean Pin Hole septum with vial 40 ml (4)	1050-79006	72 pièces
200 µm glass insert Flat bottom (5)	1030-17211	500 pièces

Disques et cylindres d'extraction MonoTrap™

Produits MonoTrap Thermal Desorption

MonoTrap™ TD

Description	Réf.	Qté
MonoTrap RSC18TD	1050-73201	30 unités
MonoTrap RGC18TD - Graphite Carbon contained	1050-74201	30 unités
MonoTrap RGPSTD - Graphite Carbon contained	1050-74202	30 unités

MonoTrap™ TD Glass Tube

Description	Réf.	Qté
Linex - MT Tube	1003-75001	1 pièce
Tdex / ATD - MT Tube	1003-75002	1 pièce
Gerstel TDS - MT Tube	1003-75003	1 pièce
Gerstel TDU - MT Tube	1003-75004	1 pièce

MonoTrap™ TD Start UP-KIT

Description	Linex	Gerstel TDS	Gerstel TDU	T-DEX / ATD	Qté
RSC18					15 pièces
RGC18					15 pièces
Clean Pin Hole Septum with Vial (4)	1050-78001	1050-78003	1050-78005	1050-78002	5 pièces
MT Stand (2)	1030-76001	1030-76003	1030-76003	1030-76002	1 pièce
MT Holder (1)					5 pièces

Sac de prélèvement Tedlar®

Description	Réf.	Qté
TK-5 MT Passive Bag 5 L	1050-79007	1 pièce
TK-10 MT Passive Bag 10 L	1050-79008	1 pièce

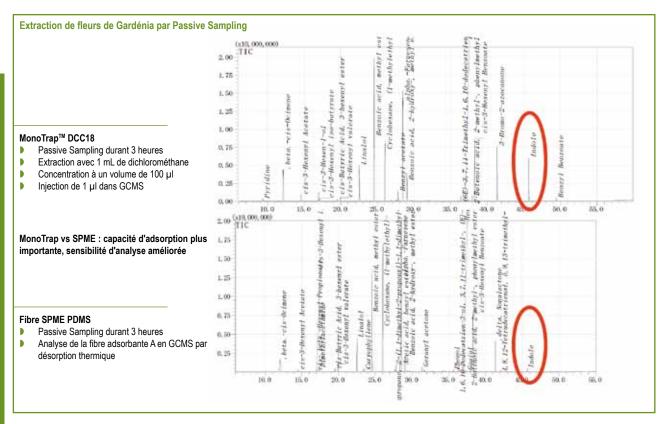
Technical Tip

Développement de méthodes

Pour des matrices ou échantillons inconnus, utilisez les deux sortes de disques ou de cylindres Mono-Trap™ dans une même préparation.

L'analyse vous permettra de déterminer quel produit est le plus adapté.

De nombreuses applications sont disponibles sur demande.

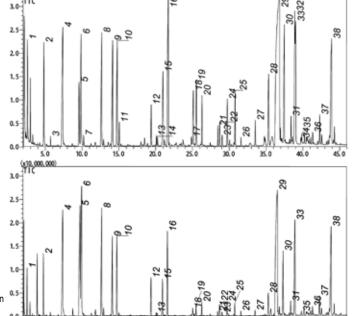

Tous les sacs de prélèvement disponibles sont référencés pages A. 260 à A. 263.

A.160

Disques et cylindres d'extraction MonoTrap™

😘 GL Sciences Inc.

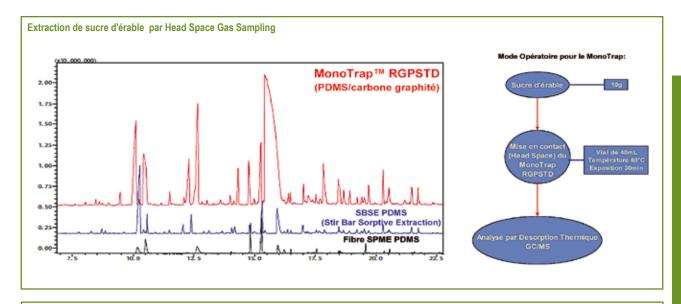
Jus de pêche



MonoTrap™ TD (désorption thermique)

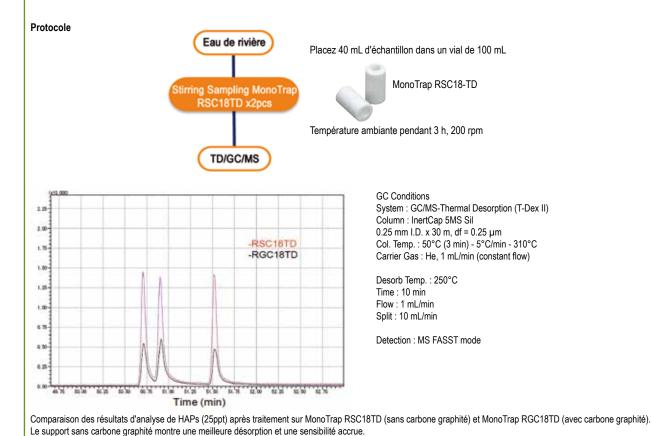
Identified with spectral livraries

SBSE


Stir Bar Sorptive Extraction

1 Ethyl Acetate 2 Ethyl butanoate 3 Butyl acetate 4 Isoamylacetate 5 D-Limonene 6 Isobutyl isovalerate 7 2-Hexenal 8 Hexylacetate 9 3-Hexenyl Acetate 10 2-Hexenyl Acetate 11 2-Isopropyl-4-methylthiazole 12 Octylacetate 13 Benzaldehyde 14 2-Methyl-4-propyl-1,3oxathiane 15 p-Menthan-2-one 16 beta-Linalool1 7 2-Methylbutanoic acid 18 gamma-Caprolactone 19 Terpineol 20 Benzyl acetate 21 cis-Geraniol 22 beta-Damascenone 23 5-Methyl-2-(1methyl-1-sulfanylethyl) cyclohexanone 24 trans-Geraniol 25 gamma-Butylbutyro-

26 beta-lonone 27 gamma-n-Amylbutyrolactone 28 Triacetin29 delta-Undecalactone 30 delta-Decalactone 31 Eudesm-7(11)en-4-ol 32 Ethyl caproate 33 delta-Undeca-34 n-Decanoicacid 35 delta-Hexylvalero-36 gamma-Dodecalactone 37 delta-Dodecalactone 38 Nootkatone


Disques et cylindres d'extraction MonoTrap™

Extraction de HAPs dans les eaux de rivière par Stirring Sampling

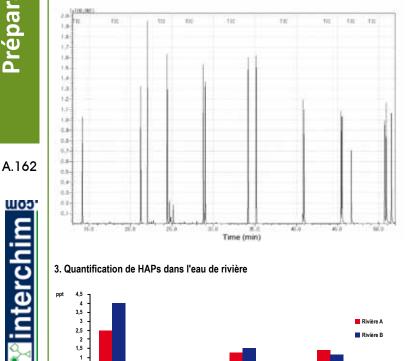
Concentration et Analyse de HAPs dans les eaux de rivière par MonoTrap TD (Désorption Thermique).

Le MonoTrap RSC18TD convient parfaitement à l'analyse de composés à haut point d'ébullition tels que les HAPs. La structure de ce matériau permet une désorption des composés optimisée.

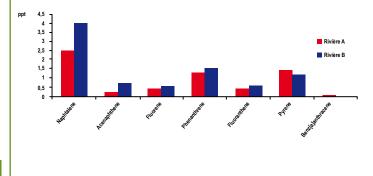
A.161

Disques et cylindres d'extraction MonoTrap™

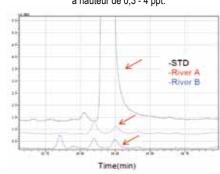
GL Sciences Inc.


Extraction de HAPs dans les eaux de rivière par Stirring Sampling

1. Composition de la courbe de calibration et du taux de récupération


Compound	Linear range (ng/ml)	r^2	Recovery(*)	RSD(**)
Acenaphtylene	0.05-5	0.9991	72%	9%
Acenaphthen	0.067-6.7	0.9975	81%	8%
Fluorene	0.015-1.5	0.9998	90%	7%
Phenanthrene	0.011-1.1	0.9996	105%	5%
Anthracene	0.003-0.3	0.9999	100%	4%
Fluoranthene	0.025-2.5	0.9983	113%	4%
Pyrene	0.025-2.7	0.9977	109%	4%
Ben[a]anthracene	0.013-1.3	0.9989	113%	4%
Chrysene	0.012-1.2	0.9984	108%	6%
Benzo[b]fluoranthene	0.013-1.3	0.9990	117%	5%
Benzo[k]fluoranthene	0.015-1.5	0.9986	110	8%
Benzo[a]pyrene	0.016-11.6	0.9993	112%	5%
Benzo[g, h, i]perylene	0.014-1.4	0.9990	104%	5%
Dibenz[a, h]anthracene	0.011-1.1	0.9872	102%	6%
Indenno[1, 2, 3-cd]pyrane	0.012-1.2	0.9954	87%	4%

Concentration in pure water; * 0.025 - 0.067 ppb; ** 0.25 ppb, n5


2. HAPs piégés sur le MonoTrap (concentration 0,25ppb)

3. Quantification de HAPs dans l'eau de rivière

On mesure des concentrations en HAPs à hauteur de 0,3 - 4 ppt.

Bilayer InertSep®

Il existe un très grand nombre de substances présentes dans les aliments de consommation courante (fruits, légumes, graines, herbes, thé, ...). Extraire simplement certaines molécules comme les résidus de pesticides est parfois complexe et difficile à mettre en oeuvre. La préparation d'échantillon peut demander plusieurs extractions sur colonnes de purification augmentant ainsi le temps de traitement des échantillons et les pertes de rendement.

Pour pallier cette problématique, GL Sciences a développé une gamme de colonnes Bilayer (double couches) InertSep® qui permettent en une seule étape d'éliminer de la matrice les impuretés comme les composés polaires, les colorants, les lipides, les acides gras, la chlorophylle tout en garantissant l'extraction de pesticides en un temps record, avec un taux de recouvrement maximum.

Les colonnes utilisées sont en polypropylène de haute qualité. Les frittés sont en polyéthylène.

Les deux lits de phases sont remplis de façon homogène et sont séparés par un troisième fritté séparateur.

Description	Réf.	Qté
Colonnes GL-Pak Carbograph / NH2 (500 mg-500 mg)-6 ml	5010-23110	30 u
Colonnes GL-Pak Carbograph / NH2 (500 mg-500 mg)-20 ml	5010-23112	20 u
Colonnes GL-Pak Carbograph / PSA (500 mg-500 mg)-6 ml	5010-23101	30 u
Colonnes GL-Pak Carbograph / PSA (500 mg-500 mg)-20 ml	5010-23102	20 u
Colonnes GL-Pak Carbograph / PSA (300 mg-500 mg)-6 ml	5010-23100	30 u

InertSep® Myco 2100 Series

Les Mycotoxines sont des toxines extracellulaires élaborées par diverses espèces de champignons microscopiques (sperguillus, Fusarium, Stachybotrys, Penicillium) très dangereuses chez l'homme et l'animal. Ils se retrouvent à de faible doses dans les céréales (riz, maïs, épeautre, orge, avoine, ...) et oléagineux (colza, tournesol, arachide, soja, sésame, noix, cacahuète, amande, ...).

Certains contaminants sont très dangereux et produisent des effets génotoxiques et cancérogènes.

L'une des espèces de mycotoxines les plus redoutables sont les Aflotoxines (B1, B2, G1, G2).

Face à ce problème majeur de santé public, GL Sciences a développé une nouvelle gamme de colonnes SPE multicouches InertSep Myco Série 2100 pour vous permettre de réaliser des extractions d'Aflatoxine à partir de matrices complexes.

Les InertSep Myco série 2100 se présentent comme une alternative moins onéreuse aux extractions par colonnes d'immunoaffinité. Leur conditionnement est de 25 unités par boite.

Colonnes Bilayer GL Sciences

Colonnes multicouches GL Sciences

G 6L Sciences Inc.

Protocole InertSep Myco

Extraction de la matrice

- Extraire 50 g de matrice solide avec 100 ml d'un mélange MeCN/H2O (90/10)
- Homogénéiser, centrifuger, collecter
 5 ml d'échantillons

Purification SPE

- Charger l'échantillon sur la colonne
- Collecter 1ml d'échantillon à une vitesse de 1 ml/min
- Introduire les 1 ml collecté sur la colonne puis récupérer 0,5 ml d'échantillon

Traitement de l'extrait

- Evaporation à sec
- Ajouter 0.1 ml de TFA puis laisser dans une enceinte obscure à température ambiante pendant 15 min
- Ajouter 0,9 ml d'un mélange MeCN/H2O (90/10
- Analyser par HPLC

InertSep Myco 2160

Constitué de 3 couches de silice (phase inverse, échange de cations, échange d'anions) Extraction de matrices simples comme la pistache.

Description	Réf.	Qté
Colonnes InertSep Myco 2160	5010-68130	25 u

InertSep Myco 2140

Constitué de 3 couches de silice (phase inverse, échange de cations, échange d'anions) Masse d'adsorbant réduite de moitié comparé aux InertSep Myco 2160 Extraction de matrices comme des grains de café, d'amandes, ...

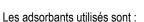
Description	Réf.	Qté
Colonnes InertSep Myco 2140	5010-68131	25 u

InertSep Myco 2180

Constitué de 3 couches de silice (phase inverse, échange de cations, échange d'anions) Produit similaire aux InertSep Myco 2160 avec une masse d'adsorbant augmentée pour la phase inverse

Extraction de matrices contenant des lipides comme des grains de mais, chocolat, ...

Description	Réf.	Qté
Colonnes InertSep Myco 2180	5010-68132	25 u


QuEChERS

QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe)

Commercialisés par la société United Chemical Technologies, les produits QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) sont utilisés pour l'extraction rapide, simple et peu coûteuse, des pesticides contenus dans des aliments de consommation courante (fruits, légumes, etc...). QuEChERS est une méthode développée et publiée depuis 2003 par le département recherche du ministère de l'agriculture américaine. Aujourd'hui, elle permet la purification d'un très grand nombre de composés de polarité diverses : plus de 200 pesticides avec des taux de recouvrement de plus de 85%.

Les produits sont tous réalisés à partir de 2 ou 3 types d'adsorbants remplis dans des tubes à centrifuger ou des colonnes polypropylène standard et maintenus avec des frittés polyéthylène ou PTFE en fonction des applications.

- Le sulfate de sodium anhydre : élimine les traces d'eau pour une meilleure dispersion des composés de l'échantillon
- De la silice greffée PSA (n-2 Aminoéthyle) : retire les composés acides, les pigments polaires, les sucres et acides gras
- De la silice greffée C18 : purifie la matrice des lipides et stérols
- Le carbone graphitisé : élimine les pigments et stérols comme la chlorophylle ainsi que les molécules planes.
- **ChloroFiltr®**: polymère développé par U.C.T., remplace avantageusement le carbone graphitisé (PGC). Il permet d'éliminer la chlorophylle et les pigments dans les matrices complexes comme les fruits et légumes avec de faibles pertes de rendement par adsorption sur les pesticides planaires.

Méthode Européenne QuEChERS: EN 15662

Kits d'extraction avec recharge de phase

Description	Réf.	Qté
Tube centrifuge 50 ml contenant 4 g MgSO4 - 1 g Acetate de sodium	EC4MSSA50CT-MP	50 u
Tube multi-pack 50 ml contenant 8 g MgSO4 - 3,5 g NaCl	ECMSNA50CT-MP	50 u
Tube centrifuge 50 ml contenant 6 g MgSO4 - 1,5 g NaCl - 1,5 g Citrate de sodium trisodique - 750 mg Citrate de sodium sesquihydrate	EUMIV50CT-MP	50 u
Tube multi-pack 50 ml contenant 6 g MgSO4 - 1,5 g Acetate de sodium anhydre	ECMSSA50CT-MP	50 u
Tube multi-pack 50 ml contenant 4 g MgSO4 - 1 g NaCl anhydre	ECMSSC50CT-MP	50 u
Tube multi-pack 50 ml contenant 1,5 g NaCl - 6 g MgSO4 anhydre	ECMSSC50CTFS-MP	50 u
Tube multi-pack 50 ml contenant 8 g MgSO4 - 2 g NaCl	ECQUVIN50CT-MP	50 u
Tube centrifuge 50 ml contenant 4 g MgSO4 - 1 g NaCl - 1 g Citrate de sodium trisodique - 0,5 g Citrate de sodium sesquihydrate - Méthode EN 15662	ECQUEU750CT-MP	50 u

Kits d'extraction

Description	Réf.	Qté
Tube centrifuge 15 ml contenant 6 g MgSO4 - 1,5 g Acetate de sodium Tube centrifuge 50 ml contenant 4 g MgSO4 - 1 g NaCl - 1 g Citrate de sodium trisodique - 0,5 g Citrate de sodium sesquihydrate - Méthode	ECQUEU215CT ECQUEU750CT	50 u 50 u
EN 15662 Tube centrifuge 50 ml contenant 4 g MgSO4 - 1 g NaCl anhydre	ECMSSC50CT	250 u
Tube centrifuge 50 ml contenant 6 g MgSO4 - 1.5 g Acetate de sodium anhydre	ECMSSA50CT	250 u
Tube centrifuge 50 ml contenant 6 g MgSO4 - 1,5 gNaCI - 2,2 g Citrate	EUMIV50CT	250 u

Tubes micro-centrifuge

A.165

QuEChERS

Kits de purification avec ChloroFiltr®

Description	Réf.	Qté
Tube centrifuge 2 ml contenant 150 mg MgSO4 - 50 mg PSA - 50 mg Chlorofiltr®	CUMPSGG2CT	50 u
Tube centrifuge 15 ml contenant 900 mg MgSO4 - 300 mg PSA - 150 mg Chlorofiltr®	ECMPSGG15CT	50 u

Kits de purification

Description	Réf.	Qté
Tube centrifuge 2 ml contenant 150 mg MgSO4 - 25 mg PSA	ECQUEU12CT	100 u
Tube centrifuge 2 ml contenant 150 mg MgSO4 - 25 mg PSA - 2,5 mg PGC	ECQUEU32CT	100 u
Tube centrifuge 2 ml contenant 150 mg MgSO4 - 25 mg PSA - 7,5 mg PGC	ECQUEU42CT	100 u
Tube centrifuge 2 ml contenant 150 mg MgSO4 - 25 mg C18 - 25 mg PSA	ECQUEU22CT	100 u
Tube centrifuge 2 ml contenant 150 mg MgSO4 - 50 mg PSA	CUMPS2CT	100 u
Tube centrifuge 2 ml contenant 150 mg MgSO4 - 50 mg PSA - 50 mg PGC	CUMPSCB2CT	100 u
Tube centrifuge 2 ml contenant 150 mg mgs04 - 50 mg PSA - 50 mg C18 - 7,5 mg PGC	CUMPSC1875CB2CT	100 u
Tube centrifuge 2 ml contenant 150 mg MgSO4 - 50 mg PSA - 50 mg C18	CUMPSC18CT	100 u
Tube centrifuge 2 ml contenant 150 mg MgSO4 - 150 mg PSA - 50 mg C18	CUMPS15C18CT	100 u
Tube centrifuge 15 ml contenant 900 mg MgSO4 - 150 mg PSA	ECMPS15CT	50 u
Tube centrifuge 15 ml contenant 900 mg MgSO4 - 150 mg PSA - 150 mg C18	ECQUEU315CT	50 u
Tube centrifuge 15 ml contenant 900 mg MgSO4 - 150 mg PSA - 45 mg PGC	ECQUEU615CT	50 u
Tube centrifuge 15 ml contenant 900 mg MgSO4 - 150 mg PSA - 15 mg PGC	ECQUEU515CT	50 u
Tube centrifuge 50 ml contenant 1,2 g MgSO4 - 200 mg PSA	ECMPSA50CT	250 u
Tube centrifuge 15 ml contenant 900 mg MgSO4 - 300 mg PSA - 150 mg PGC	ECMPSCB15CT	50 u
Tube centrifuge 15 ml contenant 900 mg MgSO4 - 300 mg PSA - 150 mg C18	ECMPSC1815CT	50 u
Tube centrifuge 15 ml contenant 1200 mg MgSO4 - 400 mg PSA	ECMS12CPSA415CT	50 u
Tube centrifuge 15 ml contenant 1,2 g MgSO4 - 400 mg PSA - 400 mg PGC - 400 mg C18	ECQUUS215CT	50 u
Tube centrifuge 15 ml contenant 1,2 g MgSO4 - 400 mg PSA - 400 mg PGC	ECQUEU1115CT	50 u
Tube centrifuge 15 ml contenant 1800 mg MgSO4 - 600 mg PSA	ECMPSA615CT	50 u
Tube centrifuge 15 ml contenant 900 mg MgSO4 - 150 mg NH2 - Méthode QuEChERS modifiée, état de Floride, programme Fruits et Légumes	ECMNAX15CT	50 u
Tube centrifuge 50 ml contenant 1,5 g MgSO4 - 500 mg C18 - Pour les échantillons contenant des composés acides tels que les mycotoxines, herbicides.	ECMSC1850CT	50 u

Kits de purification - Format colonne

Description	Réf.	Qté
Colonne 6 ml Frittés PTFE contenant 400 mg PSA - 200 mg PGC	ECPSACB6	30 u
Colonne 6 ml Frittés PTFE contenant 500 mg PSA - 250 mg PGC	ECPSACB256	30 u
Colonne 6 ml Frittés PTFE contenant 500 mg PSA - 500 mg PGC	ECPSACB506	30 u
Tube + 3 Frittés PTFE contenant 500 mg PGC - 500 mg NH2 (seconde couche)	ECNAXCB506	30 u

A.166

Publications et protocoles d'utilisation disponibles sur demande

Les produits correspondant à la méthode QuEChERS original ou à la méthode AOAC 2007.01 sont disponibles sur demande

QuEChERS Agilent

Gagner du temps et de l'argent lors vos analyses de pesticides grâce à la nouvelle approche simplifiée de préparation d'échantillons Agilent. Elle vous permettra d'extraire et de purifier vos matrices alimentaires en toute sérénité.

L'acronyme QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) définit une technique de préparation en deux étapes :

- 1) Les Kits d'extraction SampliQ QuEChERS permettent le passage des pesticides dans une fraction organique principalement dans l'acétonitrile.
- 2) Les Kits de purification SampliQ QuEChERS éliminent les impuretés interférentes de la matrice et engendrent des analyses plus sensibles.

Les produits SampliQ QuEChERS Agilent disponibles sont compatibles avec :

- La méthode original QuEChERS de 2003
- La méthode AOAC 2007.01
- La méthode européenne EN 15662

La différence fondamentale entre toutes ces méthodes est :

- La masse d'échantillons à traiter (10 g ou 15 g)
- Le type de sel à utiliser lors de l'étape 1 d'extraction

Comminuted Sample: 10 g or 15 g

ADD ACETONITRILE

SELECT EXTRACTION KIT

Original Method. 10 g samples

Original Method. 15 g samples

Buffered A0AC 2007.1 Method. 15 g samples

General Fruits &

Pigmented Fruits &

Vegetables

2 mL and 15 mL kits

15 g samples

Buffered

EN 15662 Method.

Check pH and adjust to 5 - 5.5 ADD INTERNAL STANDARD SHAKE AND CENTRIFUGE

Selection criteria:

- QuEChERS method
- · Compounds for screening

Use Buffered Kits if basesensitive pesticides are present. Agilent recommends using the Buffered kits as a first choice.

Aliquot: 1 mL, 6 mL or 8 mL*

SELECT DISPERSIVE SPE KIT

General Fruits & Vegetables 2 mL and 15 mL kits

Pigmented Fruits & Vegetables

2 mL and 15 mL kits

Fatty/Waxy Fruits & Vegetables 2 mL and 15 mL kits

Fruits & Vegetables

with Fats, Pigments

2 mL and 15 mL kits

Vegetables 2 mL and 15 mL kits Fatty/Waxy Fruits & Vegetables

2 mL and 15 mL kits

High Pigment Fruits & Vegetables 2 mL and 15 mL kits

A0AC METHOD

EN METHOD

SHAKE AND CENTRIFUGE

Analysis

*Aliquot size is specified by the method, and kits are created for these specific amounts. For pesticides with acidic groups (phenoxyalcanoic acids), analyze directly by LC/MS/MS at this point (skip the dispersive SPE stage). These acidic groups interact with the PSA that is part of the dispersive SPE step.

Selection criteria:

- QuEChERS method
- . Food type to be analyzed
- Aliquot volume

QuEChERS Agilent

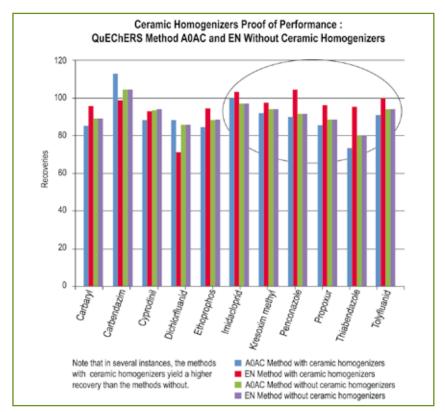
Kit d'Extraction QuEChERS

Principe

La matrice solide préalablement broyée est introduite dans un tube d'extraction 50 ml contenant les sels, des standards et le solvant d'extraction.

Une quantité d'eau est additionnée au mélange. Elle est fonction du type de matrice utilisée. Puis l'ensemble est centrifugé pendant plusieurs minutes.

Kit d'extraction SampliQ QuEChERS en sachet individuel sous vide


L'ajout d'eau dans un tube pré-rempli de sels engendre une réaction exothermique qui peut dégrader certains pesticides thermosensibles. Pour limiter ce phénomène, Agilent a développé des kits d'extraction SampliQ QuEChERS avec un conditionnement en sachets individuels sous vide pré-pesés. La qualité anhydre des sels reste optimum et l'ajout du sel n'entraîne qu'une légère éxothermie d'une dizaine de degré. Les pesticides thermosensibles sont préservés, les rendements d'extraction gagnent en reproductibilité.

Barreau homogénéisateur en céramique

Fabriqué à partir d'un mélange de céramique et d'oxyde d'aluminium, ces barreaux homogénéisateurs sont totalement inertes. Ils permettent une amélioration des rendements d'extraction sur les pesticides à analyser.

Ils sont livrés par deux unités dans chaque tube SampliQ QuEChERS dont la référence se termine par les lettres CH.

- Diminution du temps d'agitation de 67%
- Meilleure homogénéisation des échantillons
- Rendement amélioré

A.168

*	Agricul recimologies
	Description
	Kits d'extraction

Description	Echan- tillon	Format tube	Phase 1	Phase 2	Phase 3	Phase 4	Réf.	Qté				
Kits d'extraction												
Tubes d'extraction QuEChERS	10 g	50 ml	4g MgSO4	1g NaCl			5982-5550	50 u				
Tubes d'extraction QuEChERS	15 g	50 ml	6g MgSO4	1.5g NaCl			5982-5555	50 u				
Tubes d'extraction QuEChERS-Methode EN 15662	10 g	50 ml	4g MgSO4	1g NaCl	1g NaCitrate	0.5g Na2Hydro	5982-5650	50 u				
Tubes d'extraction QuEChERS-Methode AOAC 2007.01	15 g	50 ml	6g MgSO4	1.5g NaAcetate			5982-5755	50 u				
Tubes d'extraction QuEChERS pour l'Acrylamides	10 g	50 ml	4g MgSO4	0.5g NaCl			5982-5850	50 u				
Kits d'extraction avec barreaux homogénéisateurs en céramique												
Tubes d'extraction QuEChERS	10 g	50 ml	4g MgSO4	1g NaCl			5982-5550CH	50 u				
Tubes d'extraction QuEChERS-Methode EN 15662	10 g	50 ml	4g MgSO4	1g NaCl	1g NaCitrate	0.5g Na2Hydro	5982-5650CH	50 u				
Tubes d'extraction QuEChERS-Methode AOAC 2007.01	15 g	50 ml	6g MgSO4	1.5g NaAcetate			5982-5755CH	50 u				
Kits d'extraction sans tube - recharge												
Tubes d'extraction QuEChERS	10 g	50 ml	4g MgSO4	1g NaCl			5982-6550	50 u				
Tubes d'extraction QuEChERS	10 g	50 ml	4g MgSO4	1g NaCl			5982-7550	200 u				
Tubes d'extraction QuEChERS	15 g	50 ml	6g MgSO4	1.5g NaCl			5982-6555	50 u				
Tubes d'extraction QuEChERS	15 g	50 ml	6g MgSO4	1.5g NaCl			5982-7555	50 u				
Tubes d'extraction QuEChERS-Methode EN 15662	10 g	50 ml	4g MgSO4	1g NaCl	1g NaCitrate	0.5g Na2Hydro	5982-6650	50 u				
Tubes d'extraction QuEChERS-Methode EN 15662	10 g	50 ml	4g MgSO4	1g NaCl	1g NaCitrate	0.5g Na2Hydro	5982-7650	200 u				
Tubes d'extraction QuEChERS-Methode AOAC 2007.01	15 g	50 ml	6g MgSO4	1.5g NaAcetate			5982-6755	50 u				
Tubes d'extraction QuEChERS-Methode AOAC 2007.01	15 g	50 ml	6g MgSO4	1.5g NaAcetate			5982-7755	200 u				

Kits d'extraction 5982-5550

QuEChERS Agilent

Qté

Kit de purification QuEChERS

Principe

Un aliquote de quelques millilitres est prélevé à partir du tube d'extraction. En fonction de la matrice initiale, un certain nombre d'impuretés peuvent être éliminées par les tubes SampliQ QuEChERS d'extraction :

- Le sulfate de sodium anhydre : élimine les traces d'eau du solvant d'extraction
- La silice greffée PSA (n-2 Aminoéthyle): retire les acides organiques polaires. les sucres et lipides
- La silice greffée C18 : élimine les substances hydrophobes, les lipides et stérols
- Le carbone graphitisé : élimine les pigments et stérols (caroténoïdes, chlorophylle, ...)

Phase 3

Phase 4

Ne pas utiliser pour les pesticides planaires

Format tube Phase 1

Référence kit de purification SampliQ QuEChERS

Phase 2

rophylle

Ne pas utiliser pour les pesticides planaires"

Fruits et légumes	2 ml	25 mg PSA	150 mg MgSO4		 5982-5021	100 u
Elimine les acides organiques					5982-5021CH	100 u
polaires, les sucres et lipides	2 ml	50 mg PSA	150 mg MgSO4		 5982-5022	100 u
					5982-5022CH	100 u
	15 ml	150 mg PSA	900 mg MgSO4		 5982-5056	50 u
					5982-5056CH	50 u
	15 ml	400 mg PSA	1200 mg MgSO4		 5982-5058	50 u
•					5982-5058CH	50 u
Cita at 16 aaa aaa > 40/	01	05 DCA	05 04050	150 M-004	5982-5121	100 u
Fruits et légumes avec >1% de graisses	2 ml	25 mg PSA	25 mg C18EC	150 mg MgSO4	 5982-5121CH	100 u 100 u
Elimine les acides organiques	2 ml	50 mg PSA	50 mg C18EC	150 ma MaCO4	5982-5121CH 5982-5122	100 u
polaires, les sucres, les	2 1111	50 mg PSA	50 mg C roeC	150 mg MgSO4	 5982-5122CH	100 u 100 u
lipides et stéroles	15 ml	150 ma DCA	150 ma C10FC	000 ma MaCO4		50 u
	19 1111	150 mg PSA	150 mg C18EC	900 mg MgSO4	 5982-5156 5982-5156CH	50 u 50 u
	45 1	400 DCA	400 04050	1000 M=004	 	
	15 ml	400 mg PSA	400 mg C18EC	1200 mg MgSO4	 5982-5158	50 u
					5982-5158CH	50 u
"Fruits et légumes avec	2 ml	25 mg PSA	2.5 mg carbon	150 mg MgSO4	 5982-5221	100 u
pigments					5982-5221CH	100 u
Elimine les acides organiques	2 ml	50 mg PSA	50 mg carbon	150 mg MgSO4	 5982-5222	100 u
polaires, les sucres, les lipides, les carotènoïdes,					5982-5222CH	100 u
la chlorophylle	15 ml	150 mg PSA	15 mg carbon	900 mg MgSO4	 5982-5256	50 u
Ne pas utiliser pour les			-		5982-5256CH	50 u
pesticides planaires"	15 ml	400 mg PSA	400 mg carbon	1200 mg MgSO4	 5982-5258	50 u
"Fruits et légumes avec un	01	05 ··· D04	7.5	450 ··· M· 004	5000 5004	400
	2 ml	25 mg PSA	7.5 mg carbon	150 mg MgSO4	 5982-5321	100 u
haut niveau de pigments Elimine les acides organiques	45 1	450 004	45 1	000 11 001	5982-5321CH	100 u
polaires, les sucres, les	15 ml	150 mg PSA	45 mg carbon	900 mg MgSO4	 5982-5356	50 u
lipides, les hauts niveaux					5982-5356CH	50 u
de carotinoides et de chlo-						
ronhylle						

A.170

interchim 🖟

	Kits de purification	Format tube	Phase 1	Phase 2	Phase 3	Phase 4	Réf.	Qté
Fruits et légumes avec pigments et graisses Elimine les acides organiques polaires, les sucres, les lipides, les carotinoides, la chlorophylle Ne pas utiliser pour les pesticides planaires		2 ml	50 mg PSA	50 mg carbon	150 mg MgSO4	50 mg C18	5982-5421	100 u
	15 ml	400 mg PSA	400 mg carbon	1200 mg MgSO4	400 mg C18	5982-5456	50 u	
	Viandes Elimine les interférents des	2 ml			150 mg MgSO4	25 mg C18	5982-4921	100 u
matrices biologiques, les substances hydrophobes comme les graisses, les lipides, les proteines	15 ml			900 mg MgSO4	150 mg C18	5982-4956	50 u	

Référence des barreaux homogénéisateurs en céramique

Description	Réf.	Qté
Barreaux homogénéisateurs en céramique pour tubes 50 ml	5982-9313	100 u
Barreaux homogénéisateurs en céramique pour tubes 15 ml	5982-9312	100 u
Barreaux homogénéisateurs en céramique pour tubes 2 ml	5982-9311	200 u

Référence sels et des phases en vrac QuEChERS

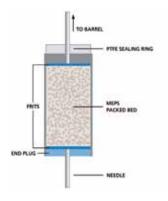
Description	Réf.	Qté
Sulfate de Magnésium	5982-8082	100 g
Acétate de sodium	5982-5751	100 g
Chlorure de sodium	5982-5750	100 g
PSA (Amine primaire et secondaire)	5982-5753	25 g
Carbone graphitisé GCB	5982-4482	25 g
SAX (amine quaternaire)	5982-2082	25 g

Colonnes SPE multicouches SampliQ QuEChERS

Ces colonnes multicouches purifient le solvant d'extraction et éliminent les pigments et stérols qui peuvent être en grande concentration dans certaines matrices.

Elles permettent un meilleur rendement de récupération pour les pesticides planaires ou pesticides polaires organiques notamment lors de l'utilisation d'un mélange d'élution acétone/ toluène (3 :1)

mping Garbon/Ammo) mg Carbon/500 mg Amino, 6 mL	5982-4569	30 u
mpliQ Carbon/Amino		
) mg Carbon/500 mg PSA, 6 mL	5982-4568	30 u
) mg Carbon/500 mg PSA, 6 mL	5982-4567	30 u
mpliQ Carbon/PSA		
scription	Réf.	Qté
	D44	



Pinterchim

MEPS

La technologie MEPS™, développée par SGE, consiste en une miniaturisation de la SPE conventionnelle. La phase stationnaire est packée dans une micro-cartouche intégrée dans une seringue de haute qualité (Système BIN).

Le volume d'échantillon nécessaire est ainsi diminué d'un facteur 1000 (µL vs. mL). De part la faible masse d'adsorbant mise en œuvre, les supports MEPS™ sont aisément réutilisables. On peut en effet utiliser un faible volume de solvant de lavage entre deux extractions. Le nombre d'utilisations varie en fonction de la nature de l'échantillon.

Combiné à l'utilisation de passeurs d'échantillons (ex : CTC...), la technique d'extraction par MEPS™ est totalement automatisable.

Comparaison de la technique MEPS avec les techniques d'extraction SPE et Liquide/Liquide

Méthode	Extraction Liquide/Liquide	SPE	MEPS
Description	Liée à la différence de solubilité des ana- lytes dans deux liquides non-miscibles.	La phase stationnaire immobilisée dans une colonne permet une intèraction sélective entre composés interférents d'un échantillon et les composés d'intérêts.	Micro SPE, l'échantillon est aspiré par la seringue et ainsi mis en contact de la phase stationnaire.
Volume d'échantillon nécessaire	Important (10-100 mL)	Peu important (1-3 mL)	Micro volume (50 µl)
Etape d'évaporation	Nécessaire pour obtenir une concentration suffisante en vue de l'analyse	Pas d'obligatoire mais permet d'augmenter la concentration de l'échantillon avant l'analyse.	Généralement pas nécessaire.
Volume de solvant utilisé	Important (10-100 mL)	Relativement important (1-10 mL)	Micro volume (500 μl)
Temps consommé	Elevé	L'étape d'évaporation peut être longue	Faible : une seule étape comporte le chargement de l'échantillon, le lavage et l'élution
Automatisation	Non automatisable	Automatisable	Totalement automatisable
Coût	Elevé : volumes de solvants utilisés importants ; traitement des déchets.	Elevé : volumes de solvants utilisés importants ; traitement des déchets.	Faible : volumes de solvants utilisés faibles ; peu de déchets à traiter.

A.172

Principe d'utilisation

Etape	Description
Etape 1	Dépôt de l'échantillon par aspiration (1 ou plusieurs volumes en fonction de cas)
Etape 2	Lavage par aspiration de 20 μ L à 50 μ l de solvant de lavage. Elimination des composés interférents.
Etape 3	Elution par aspiration du solvant approprié
Etape 4	Injection pour l'analyse

Préparation du MEPS pour l'échantillon suivant : 50 µL de solvant d'élution puis 50 µL de solvant de lavage.

Seringues MEPS

Description	Réf.	Réf. Piston de remplacement
Seringues MEPS™ 100 µL à aiguille amovible pour systèmes CTC Analytics, HTA 300A Plus & Varian 8400	005291	031826
Seringues MEPS™ 250 µL à aiguille amovible pour systèmes CTC Analytics, HTA 300A Plus & Varian 8400	006291	031831
Seringues MEPS™ 250 µL à aiguille amovible pour systèmes CTC Analytics	006292	031831
Seringues MEPS™ 100 µL à aiguille amovible pour systèmes Agilent	005292	0318263
Seringues MEPS™ 250 µL à aiguille amovible pour systèmes Agilent	006293	0318303
Seringues MEPS™ 100 µL à aiguille amovible pour systèmes Shimadzu	005293	0318274
Seringues MEPS™ 250 µL à aiguille amovible pour systèmes Shimadzu	006294	0318305

Systèmes BIN

	D / 6		011
Phase	Réf.	Seringue à utiliser	Qté
Applications GC, aiguille jauge 23, 0.63 mm OD, Cone point style			
MEPS™ BIN pour systèmes CTC Analytics, HTA 300A Plus & Varian 8400			
C18	2900101	005291 et 006291	5
Silice	2900102	005291 et 006291	5
C8+SCX	2900103	005291 et 006291	5
C2	2900104	005291 et 006291	5
C8	2900106	005291 et 006291	5
Kit de développement MEPS™ pour systèmes CTC Analytics, HTA 300A Plus & Varian 8400 (contains 1 each of C18,	2900105	005291 et 006291	5
C8, C2, SILICA and C8+SCX)	2300103	000201 Ct 000201	3
CO, CZ, SILICA AND CO+SCA)			
MEPS™ BIN pour systèmes CTC Analytics utilisant des seringues de 250 μL			
C18	2900301	006292	5
Silica	2900302	006292	5
C8+SCX	2900303	006292	5
C2	2900304	006292	5
C8	2900306	006292	5
Kit de développement MEPS™ pour systèmes CTC Analytics utilisant des seringues de 250 µL (contains 1 each of	2900305	006292	5
	2900303	000232	J
C18, C8, C2, SILICA and C8+SCX)			
MEPS™ BIN pour systèmes Agilent			
	2000004	000000 -1 000000	_
C18	2900601	005292 et 006293	5
Silica	2900602	005292 et 006293	5
C8+SCX	2900603	005292 et 006293	5
C2	2900604	005292 et 006293	5
C8	2900606	005292 et 006293	5
Kit de développement MEPS™ pour systèmes Agilent (contains 1 each of C18, C8, C2, SILICA and C8+SCX)	2900605	005292 et 006293	5
MEPS™ BIN pour systèmes Shimadzu			
	2000004	005000 -+ 000004	-
C18	2900601	005293 et 006294	5
Silica	2900602	005293 et 006294	5
C8+SCX	2900603	005293 et 006294	5
C2	2900604	005293 et 006294	5
C8	2900606	005293 et 006294	5
	2900605		5
Kit de développement MEPS™ pour systèmes Shimadzu (contains 1 each of C18, C8, C2, SILICA and C8+SCX)	2900003	005293 et 006294	<u> </u>
Applications LC, aiguille jauge 22, 0.72 mm OD, LC point style			
MEPS™ BIN pour systèmes CTC Analytics, HTA 300A Plus & Varian 8400			_
C18	2900401	005291 et 006291	5
Silica	2900402	005291 et 006291	5
C8+SCX	2900403	005291 et 006291	5
C2	2900404	005291 et 006291	5
C8	2900406	005291 et 006291	5
SCX	2900408	005291 et 006291	5
SAX	2900409	005291 et 006291	5
Kit de développement MEPS™ pour systèmes CTC Analytics, HTA 300A Plus & Varian 8400 (contains 1 each of C18,	2900405	005291 et 006291	5
C8, C2, SILICA and C8+SCX)			
MEPS™ BIN pour systèmes CTC Analytics utilisant des seringues de 250 μL			
C18	2900501	006292	5
Silica	2900502	006292	5
C8+SCX	2900503	006292	5
C2	2900504	006292	5
C8	2900506	006292	5
SCX	2900508	006292	5
SAX	2900509	006292	5
Kit de développement MEPS™ pour systèmes CTC Analytics utilisant des seringues de 250 μL (contains 1 each of	2900505	006292	5
C18, C8, C2, SILICA and C8+SCX)			

MEPS

HyperSep

Les HyperSep MEPS ont été développés pour permettre des traitements d'échantillons de faible volume plus rapidement. Les MEPS permettent une miniaturisation de l'extraction sur phase solide (SPE).

Les avantages sont nombreux :

- Quelques minutes suffisent pour préparer l'échantillon avant injection et analyse
- Réduction des volumes de solvant et de la prise d'échantillon
- Quelques micro litres sont nécessaires pour extraire les analytes du MEPS

Silice

- HyperSep C18 : pour l'extraction d'analytes mid-polaires à apolaires
- HyperSep Si : pour l'extraction de substances polaires

Polymère

- HyperSep Retain PEP : pour l'extraction d'analytes mid-polaires à apolaires.
- HyperSep Retain CX : pour l'extraction d'analytes basiques et/ou mid-polaires.
- HyperSep Retain AX : pour l'extraction d'analytes acides et/ou mid-polaires.
- Hypercarb : pour l'extraction d'analytes mid-polaires à très polaires

Seringues MEPS et composants

Description	Réf.	Qté
Thermo Scientific, CTC analytics, HTA and Varian 8400 system	s	
100 μL removable needle MEPS syringe	60308-101	1 u
Replacement plunger assembly for 100 µL MEPS syringe	60308-102	1 u
250 μL Removable Needle MEPS Syringe	60308-103	1 u
Replacement plunger assembly for 250 µL MEPS syringe	60308-104	1 u
CTC Analytics Only		
250 μL removable needle MEPS syringe	60308-105	1 u
Replacement plunger assembly for 250 µL CTC-compatible syringe	60308-106	1 u

MEPS pour GC:

Thermo Scientific, CTC Analytics, HTA and Varian 8400 Systems

S'utilise avec des seringue MEPS de 100 µl et 250 µl

Description	Réf.	Qté
MEPS HyperSep Retain PEP	60308-201	5 u
MEPS HyperSep Retain-CX	60308-202	5 u
MEPS HyperSep Retain-AX	60308-203	5 u
MEPS HyperSep Hypercarb	60308-204	5 u
MEPS HyperSep Verify-CX	60308-205	5 u
MEPS HyperSep Verify-AX	60308-206	5 u
MEPS HyperSep C18	60308-207	5 u
MEPS HyperSep Silica	60308-208	5 u
Kit de développement MEPS : Retain PEP, Retain-CX, Retain-AX, Hypercarb, et C18 $$	60308-209	5 x 1 u

A.174

MEPS

MEPS pour GC : CTC Analytics

S'utilise avec des seringues MEPS de 250 µl

Description	Réf.	Qté
MEPS HyperSep Retain PEP	60308-301	5 u
MEPS HyperSep Retain-CX	60308-302	5 u
MEPS HyperSep Retain-AX	60308-303	5 u
MEPS HyperSep Hypercarb	60308-304	5 u
MEPS HyperSep Verify-CX	60308-305	5 u
MEPS HyperSep Verify-AX	60308-306	5 u
MEPS HyperSep C18	60308-307	5 u
MEPS HyperSep Silica	60308-308	5 u
Kit de développement MEPS : Retain PEP, Retain-CX, Retain-AX, Hypercarb, et C18	60308-309	5 x 1 u

MEPS pour HPLC:

Thermo Scientific, CTC Analytics, HTA and Varian 8400 Systems

S'utilise avec des seringues MEPS de 100 µl et 250 µl

Description	Réf.	Qté
MEPS HyperSep Retain PEP	60308-401	5 u
MEPS HyperSep Retain-CX	60308-402	5 u
MEPS HyperSep Retain-AX	60308-403	5 u
MEPS HyperSep Hypercarb	60308-404	5 u
MEPS HyperSep Verify-CX	60308-405	5 u
MEPS HyperSep Verify-AX	60308-406	5 u
MEPS HyperSep C18	60308-407	5 u
MEPS HyperSep Silica	60308-408	5 u
Kit de développement MEPS : Retain PEP, Retain-CX, Retain-AX, Hypercarb, et C18	60308-409	5 x 1 u

MEPS pour HPLC: CTC Analytics

S'utilise avec des seringues MEPS de 250 µl

Description	Réf.	Qté
MEPS HyperSep Retain PEP	60308-501	5 u
MEPS HyperSep Retain-CX	60308-502	5 u
MEPS HyperSep Retain-AX	60308-503	5 u
MEPS HyperSep Hypercarb	60308-504	5 u
MEPS HyperSep Verify-CX	60308-505	5 u
MEPS HyperSep Verify-AX	60308-506	5 u
MEPS HyperSep C18	60308-507	5 u
MEPS HyperSep Silica	60308-508	5 u
Kit de développement MEPS : Retain PEP, Retain-CX, Retain-AX, Hypercarb, et C18	60308-509	5 x 1 u

UptiTip - Micro SPE

UptiTip - micro SPE

- Pour les préparations de microquantités.
- Vous pouvez préparer, dessaler, purifier des micro-quantités de produits : jusqu'à 0.1 μl dans des embouts de pipettes pré-coatées ou pré-remplies.

UptiTip™ coaté

Les embouts de pipettes sont directement activés sur leurs surfaces internes. La surface en contact avec les échantillons à préparer est optimale. Comme il n'y a pas de matériel libre, aucune contamination de l'échantillon n'est possible.

UptiTip™ rempli

Utilisables comme colonne Spin pour centrifugation. Les embouts sont remplis du support de séparation (Silice activée ou non, résine polymérique activée ou non, Agarose modifiée et activée...). L'extrémité de l'embout présente une entaille de 1-2 µm suffisamment fine pour laisser passer les échantillons mais pas le support (granulométrie 20-30 µm). Aucun filtre n'est nécessaire : le volume mort est donc réduit au maximum.

- Préparation rapide, simple
- Perte minimale d'échantillon
- Traitement de 0.1 µl
- Disponibles en 0.1–10 μl et 10-200 μl

Applications

- Dessalage
- MALDI
- Spectrométrie de masse
- Electrophorèse
- Purifications protéiques
- HPLC, CEC

	UptiTip™-Coa	ited*	UptiTip™-Pac	cked*
Description	1-10 µl	10-200 µl	1-10 µl	10-200 µl
Chromatographic Media				
C-18	BI5010	BI5020	BI5270	BI5280
C-08	BI5030	BI5040	BI5290	BI5300
C-04	BI5050	BI5060	BI5310	BI5320
Carbon	BV7460	BV7470	BU3190	BU3210
HILIC	CC6880	CC6890	CH7060	CH7070
HILIC SDS Removal	BI5100	BI5110	BI5390	BI5400
PolyCAT A	BI5120	BI5130	BI5410	BI5420
SDS-Removal	BI5150	BI1130	BI5440	BI5450
TiO ₂	BH3750	BH3760	BT3530	BU3630
ZrO ₂	BH3730	BH3740	CA8260	BX5810
Affinity Media				
Silica IMAC	BI5170	BI5180	BI5460	BI5470
Ni IMAC	BI5190	BI5200	BI5480	BI5500
Fe	CA8080	CH7580	CA8100	CH7490
Protein A	BI5210	BI5220	BI5510	BI5520
Protein G			BI5540	BI5560
Lectin ConA			BJ3650	BJ3770
Lectin WGA			BJ3780	BJ3790
Trypsin	BH3770	BI5230	BI5570	BI5580
Streptavidin	CH5900			

MonoTip™

Silice monolithique pour la préparation d'échantillon

Les MonoTip sont destinés aux purifications de nano quantités (femto à micro moles) de peptides et protéines avant les analyses en MALDI-MS et LC-MS. La structure de la silice monolithique est double :

- Porosité continue
- · Squelette méso-poreux

La structure monolithique unique garantit une faible pression de retour et une forte interaction de l'analyte avec la surface. La silice est directement liée à la surface interne des tips de 10 et de $200 \, \mu l$.

MonoTip™ C18

- Préparation d'échantillon rapide
- Faible perte d'échantillon
- Pas de contamination due à la silice
- Grande capacité

	MonoTip™C18	MonoTip™ mini C18
Silice :	Gel de haute pureté	Gel de haute pureté
Surface spécifique :	200 m ² /g	200 m ² /g
Porosité efficace :	10-20 µm	20-30 μm
Meso-pore :	20 nm	15 nm
Activation :	groupes octadécyles	groupes octadécyles
Taux de carbone :	12%	12%
Volume des tips :	200 µl	10 μΙ
Capacité :	100 μg (Angiotensin II)	5 μg (Angiotensin II)
Poids moléculaire maxi :	40000 Da	5000 Da

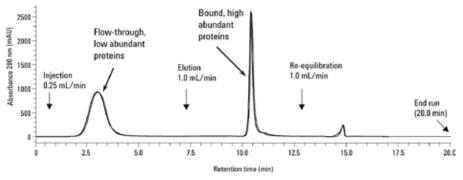
Description	Réf.	Qté
MonoTip C18 200 μl	5010-21002	24 u
MonoTip C18 200 µl	5010-21000	96 u
MonoTip mini C18 10 µl	5010-21202	24 u
MonoTip mini C18 10 ul	5010-21200	96 u

UptiTip - Micro SPE

GL Sciences Inc.

MonoTip™ Titane

Purification et enrichissement des phosphopeptides


Le phosphore se lie spécifiquement au dioxide de titane. Cette propriété est utilisée pour purifier les phosphopeptides. Le MonoTip TiO2 capture sélectivement les phosphopeptides issus de digestions protéolytiques ou de modifications post transcriptionnelles avant analyse en spectrométrie de masse.

- Préparation d'échantillons rapides
- Faible perte d'échantillons
- Grande sélectivité

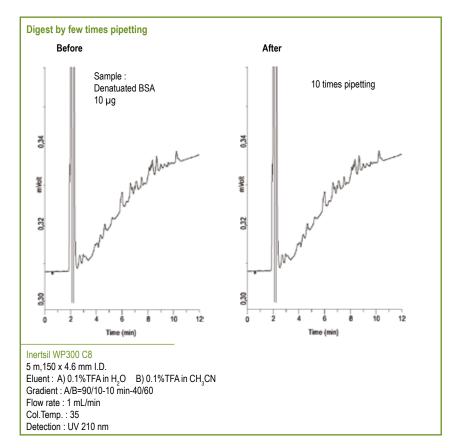
	MonoTip™Titane
Support :	Gel de silice haute pureté greffé Titanium Dioxyde
Surface spécifique :	200 m ² /g
Porosité efficace :	10-20 μm
Meso-pore :	20 nm
Volume des tips :	200 μl
Capacité :	15 μg (Tyrosine phosphopeptide)

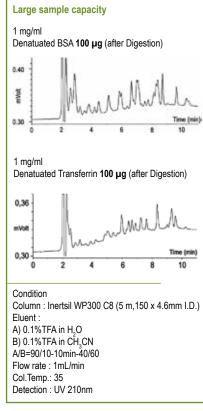
Description	Réf.	Qté
MonoTip TiO	5010-21007	24 u
MonoTip TiO	5010-21005	96 u

Comparison of Run number 20 and Run number 200

UptiTip - Micro SPE

MonoTip™ Trypsin


Digestion protéique


Les MonoTip™ Trypsin (Trypsin bovine immobilisée sur la silice monolithique) permet la digestion rapide de protéines à température ambiante.

- Digestion enzymatique à température ambiante en quelques passages sur le tip activé
- Faible perte d'échantillon
- Pas de contamination interne
- Grande capacité (100 µg de protéine)

	MonoTip™Trypsin
Support :	Gel de silice haute pureté greffé Trypsin
Surface spécifique :	100 m²/g
Porosité efficace :	10-20 μm
Meso-pore :	30 nm
Volume des tips :	200 μΙ
Capacité :	100 μg (BSA dénaturée)
Tampon enzymatique :	50 mM Bicarbonate d'ammonium pH 8.0

Description	Réf.	Qté
MonoTip Trypsin	5010-21012	24 u
MonoTip Trypsin	5010-21010	96 u

A.179

Purification des phosphoPeptides GL Sciences

GL Sciences Inc.

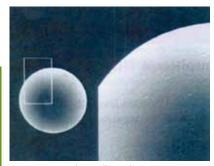


Image électronique

Echantillon :	Hela Cell Lysate
Quantité d'échantillon chargé :	50 ug
Quantité de Titansphere® :	1 mg

Phos-TiO Kit 996 185 Titansphere® TiO 635 71

A.180

Titansphere® Phos-Tio Kit

Enrichissement sélectifs des phosphopeptides

Les kits Titansphere® Phos-TiO sont constitués de cônes (qui font office de colonnes) de pipettes remplis avec les billes de Titansphere TiO, de tampons optimisés pour la purification des phosphopeptides et d'un livret d'instruction.

Ce kit permet de bien meilleurs purifications et enrichissement des phosphopeptides.

2 kits sont disponibles fonction du volume des embouts :

- Cônes de 200 µl contenant 3 mg de support
- Cônes de 10 μl contenant 1 mg de support

Caractéristique

- Grande sélectivité et sensibilité : du fait de la très grande affinité du titane avec le phosphore, les phosphopeptides peuvent être purifiés même à l'état de trace, et ainsi être analysés en spectrométrie de masse
- Mise en oeuvre facile.
 Pas plus de 5 étapes et 40 minutes pour purifier. Toutes les étapes sont menées par centrifugation
- Plusieurs échantillons différents peuvent être traités en même temps Les colonnes sont indépendantes : 1 échantillon est traité dans une colonne, plusieurs colonnes sont utilisées en même temps
- Manuel d'utilisation fourni

Performance des Titansphere® Phos-TiO Kit

Les billes de Titansphere utilisées dans les kits ont été optimisées comparées aux billes de Titansphere disponible en vrac. Les caractéristiques d'adsorption sont les mêmes mais les capacités de charges ont été augmentées : avec les kits, 1.6 fois plus de phosphopeptides différents et identifiés sont capturés.

Les Titansphere® Phos-TiO Kit ont été développés avec la coopération du Dr. Yasushi Ishihama, Keio University.

Description	Contenu	Tip volume	Granulométrie/ Qté de suport	Réf.	Qté/pack
Titansphere Phos-Tio Kit Trial Kit	Tip colonne Solution A Solution B	200 µL	10 μm/3 mg	DW2490	6 unités 400 μl 400 μl
	adaptateurs centrifugeuse		2 unités		
Titansphere Phos-Tio Kit	Tip colonne Solution A Solution B	10 μL	10 μm/1 mg	5010-21300	24 unités 2 ml 2 ml
	Tip colonne Solution A Solution B	10 µL	10 μm/1 mg	5010-21301	96 unités 6 ml 6 ml
	Tip colonne Solution A Solution B	200 µL	10 μm/3 mg	5010-21305	24 uniés 2 ml 2 ml
	Tip colonne Solution A Solution B	200 µL	10 μm/3 mg	5010-21306	96 unités 6 ml 6 ml
Adaptateurs/centrifugeuse				5010-21514	24 unités

Appareil d'extraction sous vide pour colonnes SPE

Compatibles avec toutes les colonnes SPE à embout "luer" existantes sur le marché, les appareils à vide apportent un gain de temps très important pour la préparation d'échantillon et contribuent à la rendre plus reproductible.

Ce type d'appareil permet de filtrer ou purifier simultanément de 10 à 24 échantillons. Une vanne d'arrêt est installée sur chaque voie.

Facile à mettre en oeuvre, son utilisation nécessite une simple trompe à eau de laboratoire pour faire le vide. Pour éviter les problèmes d'écoulement liés soit à un échantillon chargé, soit à un vide insuffisant, il est préférable de se munir d'une pompe à vide qui, de surcroît, apportera une meilleure reproductibilité et répétabilité des extractions.

Le débit d'écoulement des fluides est fonction du format des colonnes utilisées (cf. page A.63).

Protocole d'utilisation de l'appareil à vide Réf. 518100

- 1. Visser les jambes noires sur le couvercle de la partie supérieure de l'appareil
- 2. Introduire la poubelle plastique dans la cuve en verre
- 3. Mettre en place des aiguilles de collection sur les sorties "luer mâle" sous le couvercle
- 4. Mettre en place des robinets sur les entrées "luer femelle" du couvercle
- Assembler le couvercle sur la cuve en verre
- 6. Installer les colonnes SPE (de une à douze) sur les robinets préalablement fermés
- 7. Boucher les entrées du couvercle "luer femelle" non utilisées
- 8. Brancher le vide sur l'orifice de sortie de la cuve en verre
- Réaliser les étapes de SPE à débit et dépression constante (réglage possible du vide sur la vanne de la cuve en verre)
- Enlever la poubelle après l'étape de rinçage, puis insérer le rack de collection muni de collecteurs en verre
- Remettre le couvercle, mettre sous vide la cuve en verre puis réaliser l'étape d'élution pour collecter les échantillons
- 12. Insérer le couvercle de séchage à la place du couvercle supérieur puis remettre le vide.
- Brancher le couvercle de séchage sur une sortie d'azote chauffé pour favoriser l'évaporation et la concentration des échantillons.

Appareil d'extraction 12 positions **518100**

A.182

%interchim

Appareils d'extraction

Appareils 12 et 16 positions

	12 position	S	16 position	S
Description	Réf.	Qté	Réf.	Qté
Appareil à vide SPE complet*	518100	1 u	336570	1 u
Pièces détachées				
Chambre de verre	Q71530	1 u	Q71900	1 u
Couvercle+joint+12 robinets	Q71540	1 u	Q71910	1 u
Joints pour manifold SPE	Q71550	2 u	Q71920	2 u
Chambre de verre+vanne de vide	Q71560	1 u	Q71930	1 u
Aiguilles SPE polypropylène	Q57820	12 u	Q71940	16 u
Aiguilles SPE inox	Q71570	12 u	Q71950	16 u
Rack de collection complet	Q71580	1 u	Q71960	1 u
Plateau / tubes 13 mm	Q71590	1 u	Q71970	1 u
Plateau / flacons volumétrique	Q71600			1 u
Plateau / tubes 16 mm	Q71610	1 u	Q71980	1 u
Plateau / flacons auto sampler	Q71640			1 u
Plateau / repose tubes	Q71660	1 u	Q71990	1 u
Plateau / base	Q71670	1 u	Q72000	1 u
Robinets SPE	Q71680	12 u	Q72010	16 u
Couvercle de séchage	Q71690	1 u	Q72020	1 u
Poubelle polypropylène	Q71700	10 u		

Appareil 24 positions

Description	Réf.	Qté
Appareil à vide SPE complet*	Q72030	1 u
Pièces détachées		
Chambre de verre	Q72230	1 u
Couvercle+joint+12 robinets	Q72240	1 u
Joints pour manifold SPE	Q72250	2 u
Chambre de verre+vanne de vide	Q72260	1 u
Aiguilles SPE polypropylène	Q57830	24 u
Aiguilles SPE inox	Q72270	24 u
Rack de collection complet	Q72280	1 u
Plateau / tubes 13 mm	Q72290	1 u
Plateau / tubes 16 mm	Q72300	1 u
Plateau / repose tubes	Q72310	1 u
Plateau / base	Q72320	1 u
Robinets SPE	Q72330	24 u
Couvercle de séchage	Q72340	1 u

Appareil d'extraction 24 positions Q72030

Appareils d'extraction

Appareil 10 positions

Principalement développé pour des applications de Flash Chromatographie, cet appareil est conçu pour utiliser des colonnes SPE de grande capacité (25, 75 & 150 ml).

Description	Réf.	Qté
Appareil à vide SPE complet*	BU3010	1 u
Pièces détachées		
Chambre de verre	BU3020	1 u
Couvercle+joint+12 robinets	BU3030	1 u
Joints pour manifold SPE	BU3040	2 u
Chambre de verre+vanne de vide	BU3050	1 u
Aiguilles SPE polypropylène	BU3060	10 u
Aiguilles SPE inox	BU3070	10 u
Rack de collection complet	BU3080	1 u
Plateau / tubes 19 mm	BU3090	1 u
Plateau / tubes 25 mm	BU3100	1 u
Plateau / repose tubes	BU3110	1 u
Plateau / base	BU3120	1 u
Robinets SPE	BU3140	10 u
Couvercle de séchage	BU3160	1 u
Socle pour appareil à vide	BU3170	3 u

Appareil d'extraction 10 positions **BU3010**

Accessoires

Description	Réf.	Qté
Embout luer SPE femelle	Q72360	2 u
Embout luer SPE male	Q72370	2 u
Support pour rack	Q72380	3 u
Support pour rack 10 positions	BU3170	1 u
Support pour couvercle de séchage	Q72390	4 u
Vanne de vide complète / SPE	Q72400	1 u
Vanne de vide / SPE	Q72420	1 u
Manomètre / SPE	Q72440	1 u
Clips pour rack	Q72450	12 u
Bouchons SPE	Q72460	50 u
Tube de collection en verre 12 x 75 mm	CD9520	1000 u
Tube de collection en verre 16 x 100 mm	CD9530	1000 u

Pompe

Besoin d'une pompe à vide ? Consulter notre catalogue page F. 22.

Aiguilles et vannes de contrôle

Description	Réf.	Qté
Vanne de contrôle / aiguille PTFE SPE	Q72470	25 u
Vanne de contrôle / aiguille PTFE SPE	Q72471	50 u
Aiguilles SPE PTFE	Q72500	100 u
Aiguilles SPE PTFE	Q72501	500 u

^{*} Les kits d'appareils à vide SPE "complet" incluent le plateau d'extraction, les robinets, les racks de collection, la chambre de verre avec vanne de vide ainsi que des aiguilles en polypropylène.

Appareils d'extraction

Appareil d'extraction à pression positive **FK4250**

Appareil d'extraction à pression positive pour colonnes SPE

Diminuer à l'extrême le temps consacré à la préparation d'échantillon sans pour autant se munir de robots spécifiques est maintenant possible grâce à cet appareil d'extraction à pression positive.

Constitué de 4 rangées de 12 colonnes, il permet l'utilisation d'un maximum de 48 colonnes en simultané. Sa technologie de fabrication très perfectionnée permet, si désiré, de régler des pressions de gaz différentes sur chaque rangée de 12 colonnes. Cela permet un meilleur écoulement de l'échantillon si celui-ci est de nature visqueuse.

La percolation des solvants ou de l'échantillon à travers les cartouches s'effectue par pression au dessus du liquide. Elle doit être d'approximativement 5 bars pour un bon fonctionnement. Il se branche classiquement sur toutes les arrivées d'air ou d'azote comprimé.

Les formats 1, 3, 6, 10 & 15 ml sont compatibles. Néanmoins, un rack spécifique à chaque taille de colonnes est nécessaire.

Outil indispensable pour les extractions SPE, cet appareil permet une parfaite reproductibilité et répétabilité des méthodes développées.

Description	Réf.	Qté
Système complet équipé d'un rack 16 x 100 mm	FK4250	1 u
Système complet équipé d'un rack 13 x 100 mm	FK4240	1 u
Kit d'installation	CK4570	1 u
Support pour colonnes SPE 1 ml	CD3520	1 u
Support pour colonnes SPE 3 ml	CD3530	1 u
Support pour colonnes SPE 6 ml	CD3540	1 u
Support pour colonnes SPE 10 et 15 ml	CD3550	1 u
Support de collection pour tube 16 x 100 mm	CD3560	1 u
Support de collection pour tube 13 x 100 mm	CH6220	1 u
Support poubelle	CD3570	1 u
Remplacement filtre à air	CD3580	1 u

Appareils à vide pour plaque d'extraction ou de filtration 384, 96, 48 puits

Outil indispensable à l'utilisation de plaques multipuits, cet appareil d'extraction sous vide permet une mise en œuvre simple, rapide et efficace des techniques de traitement de l'échantillons.

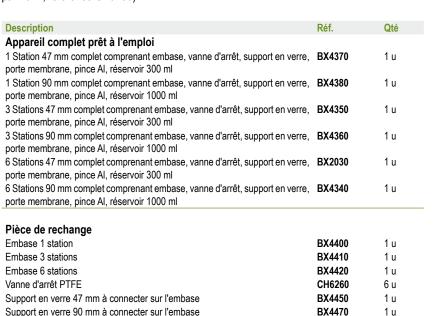
- filtration
- · filtration de précipités proteiniques
- extraction liquide/liquide
- · extraction sur phase solide (SPE).

Description	Réf.	Qté
Système complet 96 puits (manomètre, connexions, recipient, collecteur)	FO4880	1 kit
Appareil 48 & 96 puits	AN1530	u
Plaque de collection 24 puits 10 ml	BN9650	25 u
Couvercle de bouchage 24 puits pré percé	CA2320	100 u
Support de collection 24 puits	BM4880	u
Support d'extraction 24 puits	BM4890	u
Tube de collection 16 x 60 mm pour portoir 24 puits	CE3800	24 u
Plaque de collection 48 puits 5ml	BG7400	25 u
Couvercle de bouchage 48 puits pré percé	BG7410	100 u
Support de collection 48 puits	BM4900	u
Support d'extraction 48 puits	BM4910	u

A.184

Appareil 96 puits AN1530

Toutes les plaques de collections et couvercles de bouchage sont disponibles en pages A. 188 & A. 189.


Description	Réf.	Qté
Tube de collection 11 x 60 mm pour portoir 48 puits	CE3790	48 u
Plaque de collection 96 puits 2 ml	U90380	50 u
Couvercle de bouchage 96 puits pré percé	BD7730	100 u
Base standard	BM4930	u
Couvercle haut	CD3250	u
Tuyau universel	CD3270	u
Joint EPDM	CD3300	u
Joint Néoprène	CD3330	u
Cale 12,7 mm	CD3360	u
Cale 25,4 mm	CD3390	u
Manomètre / Piège à liquide	CD3420	u
Appareil 48 puits	CD3500	u
Appareil 24 puits	CD3510	u

Appareils d'extraction sous vide pour membrane

Les appareils Disc Manifold Interchim permettent la réalisation des filtrations sur des membranes de 47 et 90 mm. Le vide est indispensable à son bon fonctionnement.

Le porte-membrane en KEL-F® (Polychlorotrifluoroethylène) garantit le passage de tous types de solvant sans risque de contamination pour le filtrat jusqu'à une température limite de 80°C. La pince en aluminium assure une très bonne étanchéité entre le réservoir de chargement et la support de base intégrant le porte-membrane.

Les appareils Disc Manifold sont disponibles avec 1, 3, ou 6 stations indépendantes les unes des autres. Chaque voie possède un vanne d'arrêt permettant le contrôle du débit des fluides. La connexion aux appareils s'effectue avec des tubes souples de 8 mm ID x 12 mm OD (vendu par 10 m, référence CV9290)

Porte membrane KEL-F pour station 47 mm

Porte membrane KEL-F pour station 90 mm

Réservoir 300 ml pour station 47 mm

Réservoir 1000 ml pour station 90 mm

Pince en aluminium 47 mm

Pince en aluminium 90 mm

A.185

A.185

BX4490

BX4500

BX4430

BX4440

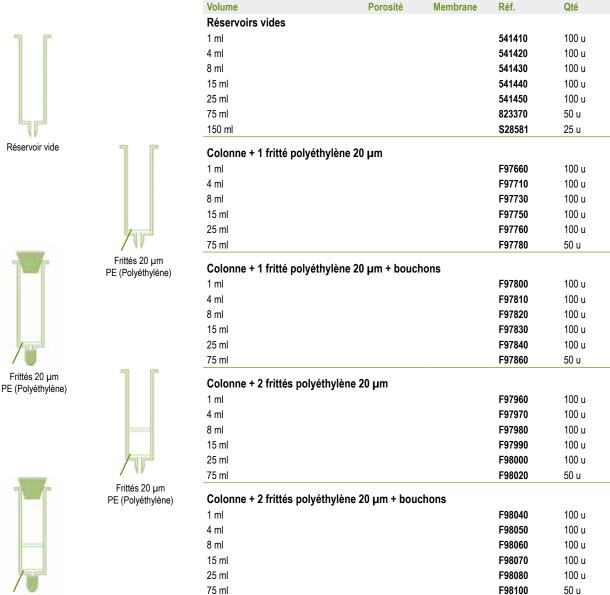
BX4460

BX4480

1 u

1 u

1 u


1 u

1 u

Accessoires SPE

Tubes Polypropylène

Extraction sur phase solide

Accessoires SPE

Minterchim

Volume	Porosité	Membrane	Réf.	Qté
Frittés 1/16"				
1 ml	20 µm	PE	779530	100 u
4 ml	20 µm	PE	841880	100 u
8 ml	20 µm	PE	858750	100 u
15 ml	20 µm	PE	823280	100 u
25 ml	20 µm	PE	885460	100 u
75 ml	20 µm	PE	823380	50 u
Frittés 1/8"				
15 ml	20 µm	PE	S08600	100 u
25 ml	20 µm	PE	S08610	100 u
75 ml	20 µm	PE	S08620	50 u
150 ml	20 µm	PE	S28600	50 u
Bouchons				
1 ml			F97350	100 u
4 ml			F97360	100 u
8 ml			F97370	100 u
15 ml			F97440	100 u
25 ml			F97470	100 u
75 ml			F97490	50 u
Capuchon pour Luer mâle			F97510	100 u

Colonnes verre pour applications spéciales

Caractéristiques:

Longueur: 300 mm
 Ø_{int}: 20.4 mm
 Embout: luer mâle
 Fond: rond avec 3 pointes
 Option: robinet en PE or PTFE

· Application : Dioxines, Flash chromatographie...

A.187

Préparation d'échantillons

Accessoires SPE

Adaptateurs pour colonnes SPE

Fixés sur la partie supérieure des colonnes SPE 1, 3 et 6 ml, ces adaptateurs compatibles embout "luer femelle" possèdent plusieurs fonctions :

- Augmenter le volume global disponible des colonnes par ajout sur l'adaptateur d'un réservoir de plus grande capacité (15, 25 ou 75 ml).
- Permettre des sélectivités multiples en empilant l'une au dessus de l'autre des colonnes remplies avec des adsorbants de natures différentes.

Description	Réf.	Qté
Adaptateur universel 1, 3, 6 ml	920941	15 u
Adaptateur colonnes verre 6 ml	BV5360	10 u

Plaques de récupération Uptiplate Collection Plate

Étudiées pour la collection de solvants ou d'échantillons, les plaques de récupération Uptiplate Collection Plate sont compatibles sur tous les appareils à vide et automates de filtration ou d'extraction sur phase solide.

Le polymère utilisé est du polypropylène de très haute qualité. La tolérance de leur géométrie lors du moulage est très faible.

Ces plaques existent avec des puits ronds ou des puits carrés. Pour l'adaptation d'un couvercle souple de bouchage, il est recommandé d'utiliser des plaques à puits carrés.

Le fond des puits peut être en forme de "U" ou de "V". La forme "U" garantit une parfaite récupération des échantillons.

Les plaques à puits carrés en "U" se présentent comme le meilleur choix possible pour une utilisation rapidité et efficace pour tous types d'applications.

Plaque de collection	Puits	Forme du puits	Volume max.	Réf	Qté
24 puits 10 ml	Carré	V	10 ml	BN9650	25 u
48 puits 5 ml	Carré	V	5 ml	BG7400	25 u
48 puits 7,5 ml	Carré	V	7,3 ml	BG7430	30 u
96 puits 2 ml	Carré	V	2,1 ml	U90380	50 u
96 puits 1 ml	Carré	U	1 ml	U90370	50 u
96 puits 350 μl	Carré	U	350 µl	U90360	50 u
96 puits 1,3 ml	Carré	V	1,35 ml	BN1940	25 u
96 puits 1 ml	Rond	U	1 ml	U90350	50 u
384 puits 150 µl	Carré	V	160 µl	BD3390	25 u
384 puits 50 µl	Carré	U	55 µl	BM4970	60 u
384 puits 50 µl	Carré	U	55 µl	BM4971	30 u

Couvercles pour plaques "Uptiplate Soft Cover"

Compatibles avec toutes les plaques de collections du marché, les couvercles "Uptiplate Soft Cover" sont indispensables au transport ou au stockage des échantillons collectés après filtration ou extraction.

Ils s'adaptent rapidement sur les plaques de collection appropriées et sont disponibles pour les formats de plaques 24, 48, 96 & 384 puits.

Pour les analyses automatisées utilisant des passeurs d'échantillons, les couvercles pré-percés évitent à l'aiguille de se boucher.

D'une résistance chimique équivalente au Néoprène, les couvercles en Santoprène "Uptiplate Soft cover" sont utilisables dans un très grand nombre d'applications à l'exception de celles contenant certains solvants chlorés.

Les couvercles en Silicone / Teflon se présentent comme une alternative universelle.

Plaque de collection	Forme du puits	Pré-percé	Nature	Réf	Qté
24 puits	Carré	oui	Santoprène	CA2320	100 u
48 puits	Carré	oui	Santoprène	BG7410	100 u
48 puits	Carré	non	Santoprène	BG7420	100 u
96 puits	Carré	oui	Santoprène	BD7730	100 u
96 puits	Carré	oui	Santoprène	BD7731	50 u
96 puits	Carré	non	Santoprène	AP3131	100 u
96 puits	Carré	non	Santoprène	AP3130	50 u
96 puits	Rond	oui	Silicone/Teflon	CD9490	50 u
384 puits	Carré	oui	Silicone/Teflon	CD9500	30 u
384 puits	Carré	non	n.c.	BB2320	50 u

La compatibilité chimique du Santoprène est limitée vis à vis du Benzène, CCl₄, CHCl₃, CH₂Cl₂, CH₃Cl, Chlorobenzène, Cyclohexane, Toluène, Xylène.

Couvercles souples pour plaques 24, 48, 96 et 384 puits

Accessoires SPE

Kit et accessoires WebSeal

Cette plaque permet la récupération d'échantillons après filtration ou extraction sur un appareil de préparation d'échantillons manuel ou automatique.

Trois modèles de vials sont disponibles :

- Vials en verre blanc : Ils permettent l'utilisation de solvants agressifs qui ne sont pas ou peu compatibles chimiquement avec le polypropylène.
- Vials en verre ambré : Ils sont utilisés pour le stockage d'échantillons photosensibles
- Vials en PTFE : ils s'utilisent pour limiter les adsorptions non spécifiques de composés sur le verre

Pour transporter ou stocker les échantillons, un couvercle souple en élastomère enrobé de PTFE vient s'insérer sur chacun des vials. Le "Mat Capper" est l'outil indispensable pour réaliser rapidement cette opération d'insertion.

Le prélèvement avec une seringue métallique directement dans le vial est possible. Un couteau spécial type emporte-pièce permet la découpe du couvercle pour isoler de la plaque un ou plusieurs vials.

Références kit et accessoires WebSeal 700 µl

Description	Réf.	Qté
Plaque 96 puits, vials en verre blanc 700 μ l, couvercle souple, cutter	MTPVC-96	5 u
Plaque 96 puits, vials en verre ambré 700 µl, couvercle souple, cutter	MTPVCA-96	5 u
Plaque 96 puits, vials en PTFE 700 µl, couvercle souple, cutter	MTPTC-96	1 u
Accessoires		
Vials en verre blanc 700 μl	1-MTV-96	500 u
Vials en verre ambré 700 µl	1-MTVA-96	500 u
Vials en PTFE 700 μI	1-MTTV-96	100 u
Plaques 96 puits pour vials 700 μl	MTP-96	5 u
Couvercles souples pour plaques 96 puits ronds	WSM-1	5 u
Couvercles souples pré-percé pour plaques 96 puits ronds	WSM-1X	5 u
Outil de découpe - Cutter	MTPC-1	1 u
Mat Capper	AL5880	1 u

Réservoirs de stockage Uptiplate Solvent Storage

Destinés principalement à la synthèse parallèle et à la chimie combinatoire, les réservoirs Uptiplate Solvant Storage ont été développés pour le stockage de réactifs, d'échantillons ou de solvants organiques.

Moulés dans des dimensions standard (127,8 x 85,5 mm), ils sont compatibles sur tous les robots de type "automated liquid handling system".

Fabriqués en polypropylène de haute qualité, ils sont résistants à des températures maximum de 135°C et autoclavables.

Leur faible volume mort permet la récupération d'un maximum de liquide.

Ils sont disponibles en plaques 24, 48 & 96 puits avec différents volumes de puits.

Le format partitionné "en rangées" existe en 6, 8, 12 & 24 compartiments et se présente comme le meilleur moyen de stockage des solvants ou réactifs avant leurs utilisations.

Description	Réf.	Qté
UPTIPLATE Solvent Storage		
Plaques 24 puits carrés 7,5 ml PP*	BG7430	30 u
Plaques 96 puits carrés 0,7 ml PP* - Fond plat	CD2210	50 u
Plaques polystyrène 85,5 x 127,8 mm	BU4410	100 u
Plaques polystyrène 84,7 x 127 mm	BV0090	100 u
Séparateur PP* pour réservoir 69,7 x 105,7 mm	CA2280	10 u
Plaques PP* fond plat sans puits	BM4550	25 u
UPTIPLATE Solvent Storage partitionnée "en rangées"		
PP* 6 Colonnes fond conique en longueur - hauteur 4,4 cm	BM8790	25 u
PP* 8 Colonnes fond conique en longueur - hauteur 4,4 cm	BM8730	25 u
PP* 8 Colonnes fond conique en longueur - profil bas - hauteur 1,9 cm	BM8780	25 u
PP* 12 Colonnes fond conique en largeur - profil bas- hauteur 1,9 cm	BJ9450	25 u
PP* 12 Colonnes fond conique en largeur - hauteur 4,4 cm	BJ0870	25 u
PP* 2x12 Colonnes fond conique en largeur - profil bas - hauteur 1,9 cm -	CA2170	25 u
volume de 3,5 ml maximum par puits		
PP* 16 Colonnes fond conique en longueur - profil bas - hauteur 1,9 cm	BM8830	25 u
PP* 24 Colonnes fond conique en largeur - profil bas - hauteur 1,9 cm	BM8860	25 u
PP* 4 Colonnes fond conique en largeur - profil bas - hauteur 1,9 cm +		
réservoir équivalent à 20 colonnes	BM8760	25 u

BG7430