G-DEXTM IIc Genomic DNA Extraction Kit <u>Representative Protocol For 1~2 × 10⁶ Cells</u>

Notice Before Use

•See the tables for the best result:

[Table 1] Solution Amounts According to Cell Number

[Table 2] Appropriate Tube Selection Guide

[Table 3] Recommended Cell Number

• Recommended cell number is based on HeLa cell. Please refer [Table 3] and it can be modified for adhesive cells.

•This protocol is for genomic DNA extraction from cultured cell ($1 \sim 2 \times 10^6$ cells).

Kit Contents (CAT. NO. 17231)

Lysis Buffer 60ml PPT Buffer 25ml	RNase A Sol. 300µl	DNA Rehyd. Buffer 25ml
-----------------------------------	--------------------	------------------------

Representative Protocol

This protocol is for extraction of genomic DNA from $1 \sim 2 \times 10^6$ cells and the recommended condition can be depended on the number of cells (under-lined). Please, refer the [Table 1].

1st Cell Lysis Step

1.Prepare <u>1~2 x 10⁶ cells</u> in PBS into 1.5 mℓ tube.

2, Centrifuge at 13,000~16000 x g for 5 sec (RT), then remove supernatant except 5~10 μ .

[Note 1] The remained solution can help to resuspend the pellet easily.

[Note 2] It is recommended to use the tabletop centrifuge at maximum rpm.

3.Resuspend the pellet completely. [Note 3] Leaving no cell clumps.

4.Add 150 ul of Cell Lysis Buffer into the tube and lysis the cells by pipetting 5-20 times.

[Note 4] If there are some clumps, incubate the tube at 37 °C until the clumps are dissolved completely.

2nd RNase Treatment Step

1.Add <u>1 $\mu\ell$ of RNase A Solution</u> into the tube, and incubate at 37 °C for 15~30 min. [Note 5] It is recommended to mix occasionally during the incubation. [Note 6] RNase A solution can be added after resolving DNA in DNA Hydration Buffer .

3rd Protein Precipitation Step

1.Cool down until room temperature and add $50 \ \mu \ell$ of PPT Buffer, then vortex for 20 sec. [Note 7] This step is essential to remove protein. Samples can be incubated on ice if necessary. 2.Centrifuge at 13,000~16,000 x g for 3~5 min,this step for the removing the protein pellet. [Note 8] If the protein pellet is not visible, incubate the tube on ice for 5 min and centrifuge it again.

4th DNA Precipitation Step

1.Transfer the aqueous phase in to a new tube and add <u>150 μ of isopropanol (2-propanol, 100%)</u>, then invert tubes several times.

[Note 9] If DNA yield poorly, add $1/100 \ \mu \ell$ of glycogen($20 \ mg/m\ell$) before adding isopropanol. It is recommended to adjust aqueous phase volume and 2-propanol in the ratio of 1:1. 2.Centrifuge at 13,000~16,000 x g for 1 min to gain DNA pellet.

3.Discard the supernatant and keep the tube on the paper towel to dry the pellet.

Add <u>150 $\mu\ell$ of 70% ethanol</u> and invert several times, then centrifuge at 13,000~16,000 x g for 1 min. [Note 10] 500 $\mu\ell$ ~ 1 m ℓ of 70% ethanol can be used.

4.Discard aqueous phase carefully and the pellet should be air-dried for 10~15 min.

[Note 11] Overdrying the pellet may make the DNA difficult to dissolve again.

5th DNA Rehydration Step

1.Add 150 µl of DNA Rehydration buffer and dissolve the pellet.

[Note 12] The amount of DNA Rehydration buffer can be adjusted by DNA concentration. Refer the table 1. 2. If the pellet is over-dried, incubate at 65 \degree for 30~60 min or 4 \degree for O/N.

3.Extracted DNA concentration and purity (A_{260}/A_{280}) should be determined by UV spectrophotometer. 4.Store at -20 °C (short term) or -80 °C (long term).

B

iNtRON BIOTECHNOLOGY

Tablet 1 Solution Amounts According to Cell Number (K562)

Cell Number (cells)	Cell Lysis	RNase A	PPT Buffer	Isopropanol (not supplied)	70% EtOH (not supplied)	Rehydration buffer	DNA Yields
100 ~ 10,000	60 µl	0.5 μl	20 µl	60 μl	60 μl	25 μl	43 ± 6 ng
10,000 ~ 100,000	100 µl	0.5 μl	33 µl	100 µl	100 µl	25 µl	45 ~ 910 ng
1.0 ~ 9.0 ×10⁵	150 μl	1.0 µl	50 µl	150 μl	150 μl	50 µl	1 ~ 12 μg
1.0 ×10 ⁶	150 μl	1.0 µl	50 µl	150 μl	150 μl	100 µl	13 ± 4 μg
1.0 ~ 2.0 ×10 ⁶	300 μl	1.5 μl	100 µl	300 μl	300 μl	150 μl	9 ~ 17 μg
3.0 ~ 5.0 ×10 ⁶	600 µl	3.0 μl	200 µl	600 μl	600 μl	200 µl	20 ~ 35 μg
5.0 ×10 ⁶	600 µl	3.0 μl	200 µl	600 μl	600 μl	200 µl	35 ± 4 μg
6.0 ~ 9.0 ×10 ⁶	750 µl	4.5 μl	250 µl	750 μl	750 μl	300 µl	33 ~ 44 μg
1.0 ×10 ⁷	1.5 ml	7.5 μl	500 μl	1.5 ml	1.5 ml	500 μl	48 ± 6 μg
1.0 ~ 2.0 ×10 ⁷	3.0 ml	15 μl	1 ml	3.0 ml	3.0 ml	500 μl	46 ~ 134 μg
3.0 ~ 5.0 ×10 ⁷	6.0 ml	30 µl	2 ml	6.0 ml	6.0 ml	600 μl	84 ~ 331 μg
5.0 ×10 ⁷	6.0 ml	30 µl	2 ml	6.0 ml	6.0 ml	600 μl	328 ± 19 μg
6.0 ~ 9.0 ×10 ⁷	10.0 ml	50 μl	3.3 ml	10.0 ml	10.0 ml	800 μl	306 ~ 470 μg
1.0 ~ 2.0 ×10 ⁸	15.0 ml	75 μl	5 ml	15.0 ml	15.0 ml	1 ml	560 ~ 1,700 μg

•We recommend this solution amounts table for the best result.

(1) Isopropanol and 70% ethanol are not supplied.

(2) K562 cell line is used for this table and other cell line may be different slightly.

(3)The amount of isopropanol is based on 90 ~ 95% of aqueous phase. It is recommended to adjust aqueous phase volume and 2-propanol in the ratio of 1:1.

(4)More Rehydration (1.5~3 times) buffer is required to redissolve the pellet. Note that DNA concentration should be considered.

(5)If DNA yield poorly, add 1/100 $\mu\ell$ of glycogen(20 mg/m ℓ) before adding isopropanol. Glycogen is a highly purified polysaccharide that can be used as a carrier for nucleic acid PPT.

Table 2 Appropriate Tube Selection Guide

Table 3 Useful Numbers for Cell Culture

Cell Number	Tube	
100 ~ 10,000	0.6 ml tube	
10,000 ~ 5.0 × 10 ⁶	1.5 ml tube	
6.0 ~ 9.0 × 10 ⁶	2.0 ml tube	
$1.0 \times 10^7 \sim 5.0 \times 10^7$	15 ml tube	
$6.0 \times 10^7 \sim 2.0 \times 10^8$	50 ml tube	

There are many kinds of dishes and flasks for the cell culture, so we describe them to the table 3, it can be shown the proper seeding density and confluency depending on the cell number. This table is based on the HeLa Cell. Polatod Products

	Surface Area (mm²)	Seeding Density	Cells at Confluency
Dishes 35 mm 60 mm 100 mm	962 2,827 7,854	0.3 × 10 ⁶ 0.8 × 10 ⁶ 2.2 × 10 ⁶	1.2 × 10 ⁶ 3.2 × 10 ⁶ 8.8 × 10 ⁶
150 mm	17,671	5.0 × 10 ⁶	20.0 × 10 ⁶
Plates 6-well 12-well 24-well	962 401 200	0.3 × 10 ⁶ 0.1 × 10 ⁶ 0.5 × 10 ⁶	$1.2 imes 10^{6}$ $0.4 imes 10^{6}$ $0.2 imes 10^{6}$
Flasks T-25 T-75 T-160	2,500 7,500 16,000	0.7 × 10 ⁶ 2.1 × 10 ⁶ 4.6 × 10 ⁶	2.8 × 10 ⁶ 8.4 × 10 ⁶ 18.4 × 10 ⁶

ITEM	CAT. NO.	SIZE
G-spin™ Genomic DNA Kit (For Cell/Tissue)	17041	50 col.
G-spin™ Genomic DNA Kit (For Blood)	17111	50 col.
G-spin™ Genomic DNA Kit (For Bacteria)	17121	50 col.
G-spin™ Genomic DNA Kit (For Plant)	17191	50 col.
Viral Gene-spin™ Viral DNA/RNA Extraction Kit	17151	50 col.
RNA-spin™ Total RNA Extraction Kit	17211	50 col.

2

