

TECHNICAL DATASHEET

KERATINASE PURE100

Name of the enzyme: KERATINASE

Organism of origin: *Bacillus licheniformis PWD-1* **Recombinant production in**: *Escherichia coli* Rosetta (DE3) pLysS (Novagen; Ref: 70956), the enzyme contains a 6-histidine tag in its C-terminus end.

CAS: 37341-53-0 ENZYME COMMISSION NUMBER: 3.4.99.11 SYNONYMS: KerA

PHYSICAL DESCRIPTION:

Appearance: white powder Form: Lyophilized powder Quality: Nickel Affinity Chromatography Storage Temperature: Room temperature Long Term Storage Temperature: -20°C/-80°C

SPECIFICITY: Keratinase is an endopeptidase non specific Serin-protease, which cleaves non-terminal peptide bonds inside polipeptide chains. It has a particular robustness allowing it to degrade insoluble and pure keratin as well as raw materials containing high amounts of keratin.

PROPERTIES:

Molecular weight	38,9
Optimum pH:	7,5
Isoelectric point:	8,73
Optimum Tª (ºC)	37

COMPOSITION:

Identifiers	Number	Name
CAS number	37341-53-0	KerA
CAS number	77-86-1	(HOCH ₂) ₃ CNH ₂
CAS number	7647-14-5	NaCl
CAS number	60-24-2	HOCH ₂ CH ₂ SH

PURE100 KERATINASE is an Affinity Chromatographically purified protein, highly pure (>95%). For this reason, **PURE100 KERATINASE** is suitable for application in research and biomedicine.

TECHNICAL DATASHEET

KERATINASE PURE100

ACTIVATORS:

PURE100 KERATINASE is activated by 0.10% of SDS, 1% of CTAB and EDTA.

INHIBITORS:

PURE100 KERATINASE is partially inhibited by Tween 20, NaClO, methanol, ethanol, dimethyl sulfoxide, isopropyl alcohol.

SUBSTRATES:

PURE100 KERATINASE is a soluble protein in water or aqueous buffers.

Pure100 Keratinase is a serin protease and mainly attacks on the disulfide (-S-S-) bond of the Insoluble and pure Keratin and playing a crucial role in hydrolyzing of feather, hair, wool, collagen and casein¹. Our recombinant Keratinase bears a 6-His tag at the carboxyl end.

ENZYMATYC ACTIVITY AND CHARACTERIZATION

PURE100 KERATINASE has an activity of >1000 U/mg, with Tris-HCl buffer (using casein as substrate at 37 °C) depending on the pH range.

The best enzymatic activity is observed at 70°C where the enzyme shows good stability.

Variation of activity to different emperature

TECHNICAL DATASHEET *KERATINASE PURE100*

APPLICATIONS:

PURE100 KERATINASE is used for research, biomedical, pharmaceutical and cosmetic applications^{2 3}. In particular, this enzyme can be used for:

- Degradation of keratin (pure keratin or raw materials for research purposes)⁴
- Elimination of keratin in acne o psoriasis
- Elimination of human callus and degradation of keratinized skins,⁵
- Depilation,
- Preparation of vaccine for dermatophytosis therapy,
- Pharmaceutical enhancement of the nail treatment⁶
- Treatment of scars and epithelium regeneration

PURE100 KERATINASE is used for the degradation of prion and prion-like proteins⁷ without chemical or physical treatments⁸.

PURE100 KERATINASE might be employed in the decontamination of precision instruments that are susceptible to prion contamination⁹, or in animal feed.

METHODS OF PREPARATION:

PURE100 KERATINASE is provided as a lyophilized powder and is stable at room temperature. For long term storage, we recommend storing the product at -20°C/-80°C for enzymatic activity preservation.

We recommend dissolving the enzyme immediately before using it or to store in aliquots at - 20°C for better preservation of the activity. We recommend avoiding multiple freeze-thaw cycles and exposure to frequent temperature changes.

PURE100 KERATINASE is provided in two formats, 500 U and 1.000 U. The enzyme is soluble in water and diluted salts solution; depending on the application of the enzyme, it can be dissolved in both.

The re-constitutive buffer of the enzyme is composed by 20 mM Tris-HCl buffer pH 7.0. We recommend dissolving the enzyme in 1 ml of re-constitutive buffer in order to make an enzymatic stock solution (500 U/ml and 1.000 U/ml respectively) and aliquot for storing at - 20°C/-80°C.

Stock solution must be diluted in the re-constitutive buffer or can be directly added into the solution where the enzyme is going to be working, in order to achieve the required enzymatic activity.

TECHNICAL DATASHEET KERATINASE PURE100

The working solution must be prepared just prior usage and remains stable if stored at 2-8°C for 3-4 days or for long-term use if frozen at -20°C for better preservation of the original activity.

STABILITY/STORAGE AS SUPPLIED

PURE100 KERATINASE is provided as a lyophilized powder and is stable at room temperature. For long term storage, we recommend storing the product at -20°C/-80°C for enzymatic activity preservation.

This product is stable for at least one year when stored at -20°C/-80°C.

SOLUTION/SOLUTION STABILITY

Usually, solutions are prepared in Tris-HCl (20 mM, pH 7.0). If the application permits, we recommend adding 1 mM β -Mercaptoethanol at the working solution for improving the activity of the enzyme.

UNIT DEFINITIONS:

"One unit of enzyme is able to hydrolyze casein resulting in an absorbance value as the Folin-Ciocalteu reagent equivalent to 1 μ mol (181g) of tyrosine per minute at pH = 7.5 at 37 ° C"

REFERENCES

⁵ Friedrich J, Gradisar H, Vrecl M, Pogacnik A (2005) In vitro degradation of porcine skin epidermis by a fungal keratinase of *Doratomyces microsporus*. Enzyme Microb Technol 36:455–460

¹ Lin X, Wong SL, Miller ES, Shih JC (1997) Expression of the Bacillus licheniformis PWD-1 keratinase gene in B. subtilis. J Ind Microbiol Biotechnol. 1997 19:134-8

² Gradisar H, Friedrich J, Krizaj I, Jerala R (2005) Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of *Paecilomyces marquandii* and *Doratomyces* microspores to some known proteases. Appl Environ Microbiol 71:3420–3426

³Suzuki Y, Tsujimoto Y, Matsui H, Watanabe K (2006) Decomposition of extremely hard-to-degrade animal proteins by thermophilic bacteria. J Biosci Bioeng 102:73–81

⁴ Chao YP, Xie FH, Yang J, Lu JH, Qian SJ (2007) Screening for a new *Streptomyces* strain capable of efficient keratin degradation. J Environ Sci 19:1125–1128

⁶ Mohorcic M, Torkar A, Friedrich J, Kristl J, Murdan S (2007) An investigation into keratinolytic enzymes to enhance ungual drug delivery. Int J Pharm 332:196–201

⁷Yoshioka M, Miwa T, Horii H, Takata M, Yokoyama T, Nishizawa K, Watanabe M, Shinagawa M, Murayama Y (2007) Characterization of a proteolytic enzyme derived from a *Bacillus* strain that effectively degrades prion protein. J Appl Microbiol 102:509–515

⁸ *Mitsuiki et al. 2006*. Thermostable, thiol activated Keratinase from Pseudomonas aeruginosa KS-1 for prospective application in prior decontamination. Research Journal of Microbiology 5 (10): 954-965, 2010

⁹ Brandelli A (2008) Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Technol 1:105–116