

AmpliteTM Fluorimetric Hydrogen Peroxide Assay Kit

Red Fluorescence

Ordering Information:	Storage Conditions:	Instrument Platform:
Product Number: #11501 (500 assays)	Keep in freezer and avoid light	Fluorescence microplate readers

Introduction

Hydrogen peroxide (H_2O_2) is a reactive oxygen metabolic by-product that serves as a key regulator for a number of oxidative stress-related states. It is involved in a number of biological events that have been linked to asthma, atherosclerosis, diabetic vasculopathy, osteoporosis, a number of neurodegenerative diseases and Down's syndrome. Perhaps the most intriguing aspect of H_2O_2 biology is the recent report that antibodies have the capacity to convert molecular oxygen into hydrogen peroxide to contribute to the normal recognition and destruction processes of the immune system. Measurement of this reactive species will help to determine how oxidative stress modulates varied intracellular pathways. The AmpliteTM Hydrogen Peroxide Assay Kit uses our non-fluorescent AmpliteTM Red peroxidase substrate to quantify hydrogen peroxide in solutions and cell extracts. It can also be used to detect a variety of oxidase activities through enzyme-coupled reactions. The kit is an optimized "mix and read" assay that is compatible with HTS liquid handling instruments.

The AmpliteTM Fluorimetric Hydrogen Peroxide Assay Kit provides a sensitive, one-step fluorometric assay to detect as little as 10 picomoles of H_2O_2 in a 100 μ L assay volume (30 nM; Figure 1). The assay can be performed in a convenient 96-well or 384-well microtiter-plate format and easily adapted to automation with no separation steps required. Its signal can be easily read by either fluorescence microplate reader with Ex/Em = 540 \pm 10/590 \pm 10 nm (maximum Ex/Em = 540/590 nm) or absorbance microplate reader at 576 \pm 5 nm.

Kit Key Features

Broad Application: Can be used for quantifying hydrogen peroxide in solutions, in cell extracts and

in live cells; and for detecting a variety of oxidase activities through

enzyme-coupled reactions.

Sensitive:The kit detect as low as 10 picomoles of H_2O_2 in solution.Continuous:Easily adapted to automation with no separation required.Convenient:Formulated to have minimal hands-on time. No wash is required.

Non-Radioactive: No special requirements for waste treatment.

Kit Components

Components	Amount
Component A: Amplite TM Red Peroxidase Substrate	1 vial
Component B: H ₂ O ₂	1 vial (3% stabilized solution, 200 _H L)
Component C: Assay Buffer	1 bottle (100 mL)
Component D: Horseradish Peroxidase	1 vial (20 units)
Component E: DMSO	1 vial (1 mL)

Assay Protocol for One 96-well Plate

Brief Summary

Prepare H_2O_2 reaction mixture (50 μ L) \rightarrow Add H_2O_2 standards or test samples (50 μ L) \rightarrow Incubate at room temperature for 10-30 min \rightarrow Read fluorescence at Ex/Em = 540/590 nm

Note: Thaw all the kit components to room temperature before starting the experiment.

1. Prepare stock solutions:

1.1 Amplite[™] Red peroxidase substrate stock solution (100X): Add 250 ∝L of DMSO (Component E) into the vial of Amplite[™] Red Substrate (Component A). The stock solution should be used promptly; any remaining solution need be aliquoted and refrozen at -20 °C.

Note: Avoid repeated freeze-thaw cycles and protect from light.

1.2 20 U/mL Peroxidase stock solution: Add 1 mL of Assay Buffer (Component C) into the vial of Horseradish Peroxidase (Component D).

Note: The unused HRP solution should be divided as single use aliquots and stored at -20 °C.

1.3 20 mM H₂O₂ stock solution: Add 22.7 ∞L of 3% H₂O₂ (0.88 M, Component B) into 977∞L of Assay Buffer (Component C).

Note: The diluted H_2O_2 solution is not stable. The unused portion should be discarded.

2. Prepare H₂O₂ reaction mixture:

2.1 Prepare the H₂O₂ reaction mixture according to the following table and kept from light:

Table 1. H₂O₂ Reaction mixture for one 96-well plate (2X)

Components	Volume
Amplite TM Red Peroxidase Substrate stock solution (100X, from step 1.1)	50 ∝L
20 U/ml Peroxidase (from step 1.2)	200 ∞L
Assay Buffer (Component C)	4.75 mL
Total volume	5 mL

3. Prepare Serial H_2O_2 (0 to 10 μ M) solutions:

Warning: 1) The component A is unstable in the presence of thiols such as DTT and β -mercaptoethanol. The final concentration of the thiols higher than $10 \sim M$ would significantly decrease the assay dynamic range.

- 2) NADH and glutathione (reduced form: GSH) may interfere with the assay.
- 3.1 Add 1 μ L of 20 mM H₂O₂ solution (from step 1.3) in 1999 μ L of Assay Buffer (Component C) to get 10 μ M H₂O₂ solution.
- 3.2 Take 200 μ L of 10 μ M solution to perform 1:3 serial dilutions to get 3, 1, 0.3, 0.1, 0.03, 0.01 and 0 standard H₂O₂ solutions.
- 3.3 Add H₂O₂ standards and H₂O₂-containing test samples into a 96-well solid black microplate as described in Tables 2 and 3.

Table 2. Layout of H₂O₂ standards and test samples in a solid black 96-well microplate:

BL	BL	TS	TS	 			
HS1	HS1			 			
HS2	HS2						
HS3	HS3						
HS4 HS5	HS4						
HS5	HS5						
HS6	HS6						
HS7	HS7						

Note: HS= H₂O₂ Standards, BL=Blank Control, TS=Test Samples.

Table 3. Reagent composition for each well:

H ₂ O ₂ Standard	Blank Control	Test Sample
Serial dilutions* (50 µL)	Assay buffer (Component C): 50 µL	50 μL

*Note: Add the serially diluted H_2O_2 standards from 0.01 μ M to 10 μ M into wells from HS1 to HS7 in duplicate. High concentration of H_2O_2 (e.g., >100 μ M, final concentration) may cause reduced fluorescence signal due to the overoxidation of AmpliteTM Red (to a non-fluorescent product).

4. Run H₂O₂ assay in supernatants reaction :

- 4.1 Add 50 μ L of H_2O_2 reaction mixture (from step 2.1) to each well of the H_2O_2 standard, blank control, and test samples (see step 3.3) so that the total H_2O_2 assay volume is 100 μ L/well.

 Note: For a 384-well plate, add 25 μ L sample, and 25 μ L of H_2O_2 reaction mixture per well.
- 4.2 Incubate the reaction for 15 to 30 minutes at room temperature, protected from light.
- 4.3 Monitor the fluorescence increase with $Ex/Em = 540\pm10 /590\pm10$ (optimal Ex/Em = 540/590) nm using a fluorescence plate reader.

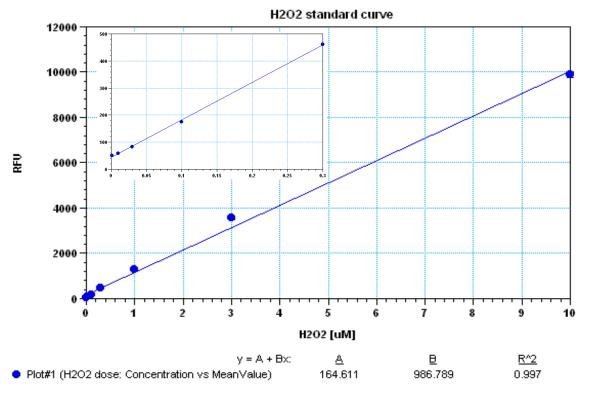
Note: The contents of the plate can also be transferred to a white clear bottom plate and read by absorbance microplate reader at the wavelength of 576±5 nm. The absorption detection has lower sensitivity compared to fluorescence reading.

5. Run H₂O₂ assay for cells:

The AmpliteTM Hydrogen Peroxide Assay Kit can be used to measure the release of H₂O₂ from cells. The following is a suggested protocol that can be modified for your specific research needs.

- 5.1 The H₂O₂ reaction mixture should be prepared as step 2.1 except that the Assay Buffer (Component C) should be replaced with the media that is used in your cell culture system. Suggested media including (a) Krebs Ringers Phosphate Buffer (KRPB); (b). Hanks Balanced Salt Solution (HBSS); or (c) Serum-free media.
- 5.2 Prepare cells in 96-well plate (50-100 µL/well), and activate the cells as desired.

 Note: The negative controls (media alone and non-activated cells) are included for measuring background fluorescence.
- 5.3 Add 50 μ L of H₂O₂ reaction mixture (from step 5.1) to each well of the cells, and those of H₂O₂ standards (from step 3.3).


Note: For a 384-well plate, add 25 μ L cells, and 25 μ L of H_2O_2 reaction mixture per well.

- 5.4 Incubate the reaction for 15 to 30 minutes at room temperature, protected from light.
- 5.5 Monitor the fluorescence increase $Ex/Em = 540\pm10/590\pm10$ (optimal Ex/Em = 540/590) nm using a fluorescence plate reader.

Data Analysis

The fluorescence in blank wells (with the assay buffer only) is used as a control, and is subtracted from the values for those wells with the H_2O_2 reactions. The typical data is shown in Figure 1 (H_2O_2 standard curve).

Note: The fluorescence background increases with time, thus it is important to subtract the fluorescence intensity value of the blank wells for each data point.

Figure 1. H_2O_2 dose response on 384-well black plate using a Gemini fluorescence microplate reader (Molecular Devices) measured with the AmpliteTM Hydrogen Peroxide Assay Kit. As low as $0.03 \mu M$ H $_2O_2$ can be detected with 30 minutes incubation time (n=3). The insert shows the low levels of H_2O_2 detection.

References:

- 1. Hoffmann, O. M., Becker, D., and Weber, J. R. (2007) J Cereb Blood Flow Metab.
- 2. Funk, R. S., and Krise, J. P. (2007) *Mol Pharm* **4,** 154-9.
- 3. Krebs, B., Wiebelitz, A., Balitzki-Korte, B., Vassallo, N., Paluch, S., Mitteregger, G., Onodera, T., Kretzschmar, H. A., and Herms, J. (2007) *J Neurochem* **100**, 358-67.
- 4. Yang, Y., Xu, S., An, L., and Chen, N. (2007) *J Plant Physiol*.
- 5. Lee, J. E., Kim, H., Jang, H., Cho, E. J., and Youn, H. D. (2007) *J Neurochem*.
- 6. Goth, L. (2006) *Redox Rep* **11**, 281-2.
- 7. Laloi, C., Stachowiak, M., Pers-Kamczyc, E., Warzych, E., Murgia, I., and Apel, K. (2007) *Proc Natl Acad Sci U S A* **104**, 672-7.

Warning: This kit is only sold for the end users. Neither resale nor transfer to a third party is allowed without written permission from AAT Bioquest. Chemical analysis of kit components is strictly prohibited. Please call us at 408-733-1055 or e-mail us at info@aatbio.com if you have any questions.

