

PowerPol 2X PCR Mix with Dye

Catalog: RK20719 Size: 5 mL/10 mL/25 mL/100 mL

Concentration: 2X

Component:

PowerPol 2X PCR Mix with Dye

RM20388

Product Description

PowerPol 2X PCR Mix with Dye is an optimized premix containing DNA polymerase, dNTPs, MgCl₂, KCI and other stabilizers. This product is suitable for conventional PCR amplification. The template can be purified DNA, bacterial colonies/bacteria liquid, crude extract or cDNA, etc. This product can use complex genomic DNA as a template to amplify a target fragment of 5 kb in length or a simple template such as lambda DNA to amplify a target fragment of 10 kb in length. It is suitable for applications such as PCR reaction, colony PCR identification, vector construction and so on. etc.

Storage: -20°C

Product Source:

The DNA polymerase gene was induced and expressed in *E. coli* and obtained by separation and purification

Thermal Inactivation: No

5´-3´exonuclease activity: No

3´-5´exonuclease activity: Yes

Fidelity : 6X Taq

Product End: Blunt end

Operation Description

Standard Protocol:

 It is recommended to prepare all reaction components on ice, and then quickly transfer the reaction system to a thermocycler preheated to 98°C.

Recommended Reaction:

Components	25 µL	50 µL	Total Concentration
PowerPol 2X PCR Mix with Dye	12.5µL	25 µL	1X
Forward Primer (10 µM)	0.5 µL	1 µL	0.2 µM
Reverse Primer (10 µM)	0.5 µL	1 µL	0.2 μM
DNA Template*	Variable	Variable	<300 ng
Nuclease-free Water	to 25 μL	to 50 µL	N/A

* Note: The optimal reaction concentration varies with different DNA templates. Please refer to the basic principles of PCR below.

Step	Temp	Time	Cycles	
Pre-denatura	0005		7	
tion	98°C	45 s	I	
Denaturation	98°C	10 s		
Annealing	55-65°C	30 s	30	
Extension	72°C	20-30s/kb		
Post-extension	72°C	5min	1	
Hold	4-12°C	∞	1	

Recommended PCR Program:

PCR Principles:

1. Template:

High-quality purified DNA templates are important to high-fidelity PCR reactions. The recommended DNA template amounts with different complexity are listed Below (For a 50µL reaction):

DNA	Input Amount	
Plants, animals and human	10 ng~100 ng	
gDNA		
<i>E</i> .coli, lambda gDNA	500 pg-200 ng	
Plasmid DNA	1 pg~10 ng	

Note: If the DNA template is obtained from a cDNA synthesis reaction, the template volume should be less than 10% of the total reaction volume. If long fragments are amplified, the amount of template input should be increased appropriately

2. Primers:

Oligonucleotide primers are typically 20-40 nucleotides in length with a GC content of 40-60%. Primers can be designed and analyzed using software such as Primer 3. The final concentration of each primer in the PCR reaction system should be in the range of 0.1-1 μM.

3. Denaturation:

98℃ pre-denaturation for 45 s can fully denature most DNA templates. In the case of high complexity DNA templates, the pre-denaturation time should be extended up to 3 minutes for fully denaturation. Generally, the recommended denaturation condition for low-complexity DNA templates is 98℃, 5-10 s

4. Annealing:

The annealing temperature of PowerPol 2X PCR Mix with Dye is usually higher than other PCR polymerases. Generally, primers longer than 20 nt are annealed at (lower primer Tm+3)°C for 10-30 s; when the primers are shorter than 20 nt, an annealing temperature equivalent to the lower primer Tm. When using a new primer set for PCR reaction, we recommend a gradient PCR to determine the optimal annealing temperature. In a two-step amplification protocol, the annealing temperature should be set to the extension temperature.

5. Extention:

The recommended extension temperature is $72 \,^\circ$ C. The extension time depends on the length and complexity of the amplicon. For the low-complexity amplicons (plasmid DNA), the extension condition is 10 s/kb. For high-complexity amplicons, it is recommended to increase the extension time to 20-30 s/kb. In some cases, the extension time for cDNA templates should be less than 1 min/kb

6. Cycles:

To obtain enough yield of PCR products, 25-35 cycles are recommended.