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Green Fluorescent Proteins (GFP) 
 

Split GFP and SuperFolder GFP, 
 an innovative green fluorescent protein: 

Green Fluorescent Protein (GFP) has been around for many years and has 

been used in a lot of creative ways. Split GFP and SuperFolder GFP allows 

for improved standard applications and innovative ones: 
 

    Quantify the expression level of a target protein, more accurately 
 

    Localize the expression of target protein in cells,with more natural distribution 
 

    Determine a target protein’s solubility, Discover which domains of a protein are soluble 
 

    Evaluate how a protein interacts with other proteins (protein-protein interaction) 
 

    Reveal the effect of a small molecule on the protein’s folding 
 

 
●Ordering information: 
In Vitro Mammalian Optimized Split GFP Fold-N-Glow Solubility Assay - Mammalian S11 Single Plasmid ref.22004003      

In Vitro Mammalian Optimized Split GFP Fold-N-Glow Solubility Assay Kit ref.25004001, 84 tests 

In Vitro Bacterial Split GFP Fold-N-Glow Solubility Assay - Bacterial S11 ref.21004003      

In Vitro Bacterial Split GFP Fold-N-Glow Solubility Assay Kit ref.20004001, 84 tests 

In Vitro Split GFP Fold-N-Glow Solubility Assay - Positive Control ref.21004002      

In Vitro Split GFP Fold-N-Glow Solubility Assay - Universal Detection Reagent ref.21004001      

Superfolder GFP Expression Plasmid ref.23004006 

 

●More information: 

|  Monitor Protein Expression  |  Determine Solubility  |  Find Soluble Domains   

|  Protein-Protein Interactions  |  Drug Discovery  |  References 

|  Comparison with other tagging methods  |  History 



 

 

Comparison with other tagging methods   
 

 
 

Detailed applications 
 

Using GFP to Monitor Protein Expression (SuperFolder GFP, Split GFP) 
 

Overview 

A highly engineered version of Green Fluorescent Protein (GFP), can monitor the expression level of a target protein. Named "SuperFolder," 

this engineered GFP quantifies the expression level of a target protein because the amount of fluorescence is directly correlated with the 

amount of expressed protein. SuperFolder makes this possible because it folds and fluoresces no matter how poorly the target protein is 

expressed or how insoluble it is. If there is no fluorescence using SuperFolder, the researcher can safely conclude that the protein is not 

being expressed. Therefore, SuperFolder is a powerful tool to quickly and easily measure protein expression with a high level of confidence. 

 

Split GFP can also be used to monitor protein expression 

that are properly expressed and conformed. Compared with 

full-length GFP, the smaller GFP11 tag prevents non-

natural distribution of proteins in cells (see H-Ras in 

figure A) 

 

Key Characteristics 

●    Robust  ●   Minimize perturbations 

●    Reliable       to protein folding 

●    Quantifiable       and distribution in cells 

●    Fast and easy 

 

Figure A r: GFP(1-10) staining for studying protein 

localization by fluorescence microscopy. 
Upper pannels: Two proteins, MeCP2 and H-Ras, were expressed 

in N2A cells, as GFP fusions (left panels) or GFP 11 fusions (right 
panels). MeCP2–GFP 11and GFP 11–H-Ras were stained with 

recombinant GFP 1-10 reagent before mounting on microscope 

slides.  
Left image, green fluorescence at 488-nm excitation. Upper right 

image, overlay of green fluorescence and DAPI nuclear staining 

(blue). Scale bars, 10 μm.  
 

Lower panels: Double staining experiments 

Left: Anti-MeCP2 sera (half right field, red) and GFP 1-10 
staining (half left field, green) were performed on N2A-MeCP2-GFP 11 cells and compared with N2A cells expressing MeCP2-GFP fusions.  

Right: similar staining with anti-H-Ras on HEK–GFP 11–H-Ras and GFP–H-Ras HEK cells.  
FITC emission channel at 530 nm with excitation at 488 nm (green), rhodamine emission channel detected at 590 nm with excitation at 545 nm (red), 

superimposition of both images (right/yellow).  

 
“The split GFP detection system is particularly well-suited for protein tagging and detection in eukaryotic cells using multiple formats. Localization and 

quantitative expression can be simultaneously performed either in fixed models or in living cells with transient or stable expression of GFP 1-10.  

The main advantages over existing epitope tags are the high specificity and quantitative recognition between GFP 11 and GFP 1-10 fragments and the 

absence of fluorescence of the GFP 1-10 protein. This confers very low background signals and facilitates staining procedures, as it does not require 

extensive washing steps compared with classical immunostaining methods. The small size of the GFP 11 fragment (15 amino acids) should be less 

perturbing than the bulky GFP, and GFP 1-10 staining can be performed in combination with other immunostaining procedures as for GFP. The versatility 
of the system will be further enhanced by the possibilities of combining the split GFP method with chromatic variants of GFP, such as cyan and yellow” 

 

Split & 

SuperFolder 

GFP 

mailto:http://www.biotechniques.com/BiotechniquesJournal/2010/October/One-step-split-GFP-staining-for-sensitive-protein-detection-and-localization-in-mammalian-cells/biotechniques-304387.html?pageNum=4


 

“For GFP–H-Ras, we noticed the presence of additional intracellular vesicular structures in both cell types, as previously reported showing that fusion of H-

Ras to the whole GFP molecule resulted in its redistribution toward the ER and Golgi membrane, whereas unmodified H-Ras was found mostly at the plasma 

membrane (17). … the smaller size of the GFP 11 tag may alter  less than full-length GFP, the natural distribution of the tagged protein,… the staining with 
split GFP is nonperturbing and correlates accurately with true protein localization, as evidenced by double staining experiments” 
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Using LANL GFP to Determine Solubility 
 

Overview 

LANL's GFP can be used to quickly determine whether an expressed protein is soluble. It does this very simply and elegantly. First, a short 

section of GFP called a "tether" or "tag" is appended onto the nucleotide sequence of the protein of interest. The tether is about 14 amino 

acids (a.k.a. S11, strand 11 of GFP) which is too short to effect the dynamics of your expressed protein. 

 

Using split for solubility studies 

Figure 1. Split GFP: how a soluble expressed protein will behave in the system. 

 

A vector containing the remaining portion of GFP (a.k.a S1-10, strand 1-10 of GFP) 

called the "detector" is also inserted into the host cell. Once the target protein and S11, 

and the remaining portion of GFP, S1-10 are inserted into the host, determining the 

solubility of the target protein is easy: express your protein of interest (which has the 

S11 tag) (Fig. 1, #1), followed by inducing the expression of the S1-10 "detector" (Fig. 

1, #2). 

Split non-soluble 

 

Figure 2. Split GFP: how an insoluble expressed protein will behave in the 

system. 

 

If your protein is soluble, aggregation will not occur (Fig. 2, #1) and the S1-10 

detector will be able to bind to the S11 tag to create a fully functioning, 

fluorescing GFP (Fig. 1, #3). However, if the expressed protein is not soluble, it 

will aggregate (Fig. 2, #1), not allowing the S11 tag to interact with the S1-10 

detector and no fluorescense will occur (Fig. 2, #3). 

 

Significant efforts have been directed into an automated, robotic-based system to process hundreds of protein samples in a parallel. Please 

inquire.  

Key Characteristics 

●    Fast 

●    Cheap 

●    Reliable 

●    Quantifiable 

●    Automation and high-throughput sample processing 
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Using LANL GFP to find Soluble Domains in Proteins 
 

Overview 

The motivation behind inventing a fast reliable system for identifying the individual soluble domains in proteins was guided by the following 

facts: 

    ° Many proteins have multiple domains within them; 

    ° Individual domains often fold independently of the other domains within the same protein; 

    ° Individual domains, rather than entire proteins, are easier investigate; 

    ° While bioinformatics provides powerful tools to assist with identifying domains, 

        it cannot reliably predict which domains will be optimally expressed. 

 

LANL's solution is to use our highly evolved version of GFP to approach this problem differently. Waldo has designed a system which is 

based on a library of fragmented genes that are then expressed (Fig. 1, # 1 and #2). Using a version of our GFP to determine solubility, the 

resulting proteins from the library can then be rapidly screened to find those that are soluble (Fig. 1, #3). 

Figure 1: Making protein analysis easier 

Figure 1. Proteins are easier to investigate if they are divided into individual domains. 

 

Our process involved four different steps that takes approximately seven 

business days to go from gene sequence(s) to identified soluble domains. 

This turnaround time is unbelievable considering the amount of time and 

effort other processes require to discover the same information. The four 

individual steps are described in great detail below. 

Step 1 (Library size ≥107) 

 

Figure 2: Step 1 of the LANL process 

 

The first step of the LANL process is the fragmentation of a gene 

or genes of interest. Keep in mind, with the assistance of robotics, 

this process could easily be scaled to full genome analysis. 

 

Figure 2. Step 1 of 4 of LANL's process for easily finding soluble 

domains. This step involves fragmenting gene sequences: 

 

The first step of our process is to take a set of genes or ORFs and 

fragment them using any number of methods such as restriction 

enzyme treatment (e.g. DNAse) or mechanically disrupting them with shearing forces (Fig 2, #2). If the size is known of the gene or set of 

genes, the gene fragments are run on an agarose gel and the fragments of the correct size can be cut out and taken into the next step of the 

process for focused study. 

  

●Step 2 

 

Fragments are then blunt cloned and screened. However, since >95% of expressed proteins are not in the native frame and likely have a stop 

codon (Fig. 3, #1), the DNA fragments are cloned into the LANL ORF selector before 

spending valuable time and effort on the GFP screen. Using the LANL ORF selector, 

the test fragment is inserted between two halves of dihydrofolate reductase enzyme 

(DHFR) to determine which inserts are out-of-frame (Fig. 3). 

 

Figure 3. DHFR insertion site for fragment screening: 

 

If the inserted fragment is out of frame, it is likely to have one or more stop codons, so the second half of DHFR selection gene will not be 

expressed. The result is that when the host E. coli cells are plated on a low concentration of trimethoprim, the clones with out-of-frame 

constructs cannot survive. Clones without stop codons (the fragment is in-frame) can produce DHFR to metabolize trimethoprim and survive 

(Fig. 4, image 2). These plasmids are then recovered and investigated further (Fig. 4, image 3, the plasmids with green inserts). 

Step 3 

Figure 4. Step 2 of 4 of LANL's process for 

easily finding soluble domains. 

 

Keep in mind, in this step solubility has not been 

determined yet. This step simply removes those 

DNA fragments which do not encode authentic 

protein domains. 

  

  

  

  

●Step 3 (Library size approx. 105) 

 

Once the collection of fragments that are known to express viable protein domains is identified, the in-frame inserts can then be cloned into 

LANL's in vivo Split GFP system to determine which in-frame, expressed domains are soluble (Fig. 4, #1). The Split GFP constructs are 

transformed and grown in E. coli and single colonies are screened by plating on agar plates. First, expression of the S11-tagged protein is 

induced, followed by induction of the GFP detector fragment (S1-10)(Fig. 5, left). 



 

 

Figure 5. Step 3 of 4 of LANL's process  

for easily identifying soluble domains:  

 

Under these conditions, brighter the clones indicate that the 

S11-tagged, soluble protein is interacting with the S1-10 

detector fragment and fluorescence is being produced. The brightest clones are then picked from the agar plates and grown in 96 well liquid 

cultures. By inducing only the AnTET promoter in the 96-well plate cultures, only the S11-tagged protein is expressed. The cells are lysed, 

and the soluble and insoluble protein products quantified 

by adding (not inducing the expression of) the in vitro 

S1-10 detector fragment. 

 

Briefly, the Split GFP system is based on fragmenting a 

highly modified GFP into two separate, soluble pieces: 

GFP strand 11 (S11), also known as the "tether" of "tag" 

and GFP strands 1-10 (S1-10), known as the "detector fragment" (Fig. 6). 

 

 Figure 6. The LANL Split GFP system. 

 

First, the S11 tagged protein domain is expressed using AnTET induction. Then the S1-10 detector fragment is expressed using IPTG 

induction. If the expressed domain is soluble, it will allow the S11 "tether" to interact with the larger GFP fragment, S1-10. The interaction 

of S11 and S1-10 allows GFP to fluoresce (Fig. 6). 

 

The beauty of the LANL GFP system is that there is no need to reclone the construct to quantify expression. To express the S11 tag alone, 

one simply adds only AnTET which induces expression of the S-11 tagged protein and the S1-10 can be added as an in vitro reagent! 

 

  

●Step 4 (Library size 102) 

 

In the final step of LANL's process, clones of interest are selected from the 96-well plate used in Step 3 and are sequenced (Fig. 7, # 1). At 

LANL, typically the entire 96-well plate is sequenced so that the position of all the fragment clones can be mapped to the parent gene. 

 

Figure 7. Step 4 of 4 of LANL's 

process for easily identifying 

soluble domains: 

 

In silico, the sequence of the gene 

fragments are aligned onto the full 

parent gene and color coded by 

solubility. At LANL, we use the 

color scheme, red-orange-yellow-

green-blue-bluish white, where the 

red side of the spectrum identifies 

the least soluble domains.). This 

makes finding the experimental 

domain boundaries very clear and 

makes it easy to identify compact members of the groups (a.k.a the minimal tiling path) which are subcloned for scale up (Fig. 7, #2). For 

crystallographic applications, the clone is subcloned without the S11 tag, or the tag can be included as a way to track purification, and then 

cleaved off. 

 

●Crystallizing a 2200 aa protein from Mycobacterium tuberculosis 

 

If the intent is to crystallize the identified soluble domains as we did with a 2200 aa protein called ssPC, LANL recommends selecting 

multiple compact versions of each soluble domain to increase the probability of finding crystallizable, diffracting constructs (Typical yields 

15-30 mg/l, concentrate to >40 mg/ml). Figure 8 shows an SDS gel of some of the most compact (smallest in set) soluble fragments or 

soluble domains representing the 6 predicted domains of ppSC, subcloned into a pET N-terminal 6HIS vector. Soluble (S), insoluble pellet 

fraction (P) of E. coli lysates. 

LANL's Split GFP 



 

Figure 8. For crystallization, select multiple compact versions of each domain. 

 

One of the advantages of having a dense sampling of fragment position and solubility is that it is easy to identify the boundaries of a domain. 

As fragments get progressively shorter, they become soluble near the boundary domains, then suddenly become less soluble as the fragments 

are further truncated. This makes it easier to select a small subset of compact clones for detailed study. Shown in Fig. 9 are some compact 

‘double domain’ constructs containing the KR+ACP domains of the large polyketide synthetase from Mycobacterium tuberculosis (M. tb). 

The protein is nicely monodisperse by gel filtration chromatography and runs as a monomer without significant aggregation at >10 mg/ml. 

LANL's Split GFP 

Figure 9. For crystallization, select multiple compact versions of each domain. 

 

Compact clones are less likely to contain disordered ends, and having several choices near a given boundary size increases the chance that at 

least one will crystallize and give diffraction-quality crystals. The split GFP domain trapping protocol readily identifies two sets of 

fragments, one focusing on a larger version of the ER-containing domain from ca. 1480-1755, and another more compact version focusing 

down to amino acids 1558-1750. This fragment crystallized and is very similar to the previously published construct Shapiro et. al used to 

solve the structure (1PQW). (Fig. 10) 



 

Figure 10. For crystallization, select multiple compact versions of each domain. 

 

 

Using LANL's GFP to determine protein-protein interactions 
 

Overview 

Typical protein complementation assays (PCA) work by spliting a reporter molecule such as a fluorescent protein or enzyme into two pieces 

(see Michnick's work). Alone, the pieces cannot fold and are inactive. However, if the pieces are attached to interacting proteins, their 

interaction forces the two pieces of the reporter molecule together and its activity is restored. This sounds appealing in principle but is 

difficult in practice. Key to understanding the limitations is understanding that typical reporter fragments generated by splitting a reporter 

molecule, such as GFP, are relatively large, have poor solubility, and can perturb the normal behavior of the attached test proteins (described 

by Lynne Regan et al.). In the typical case for GFP, the protein is split into two large pieces that cannot spontaneously fold and aggregate on 

their own (see Fig. 1, #1 and #2). 

Figure 1. GFP that is randomly split does not spontaneously recombine. 

 

Chaperones try to refold them, but each piece unfolds and aggregates 

before it "finds" its compliment (Fig. 1, #3), and the GFP fragments 

are not usually close enough together to recombine (Figure 1, #4). As 

a result, very little of the active, fluorescent GFP forms (Figure 1, 

#5). Many researchers hope that by attaching the GFP fragments to 

potentially interacting "passenger" proteins (Fig. 2, #1), they will 

overcome the solubility issues with the GFP fragments. 

Unfortunately, this is not the case. With interacting passenger 

proteins attached to the cumbersome GFP fragments, folding 

interference leads even more strongly to misfolding, not only of the 

GFP pieces but also the fused passengers. (Fig. 2, #2). 

 

Figure 2. GFP that is randomly split does not spontaneously 

recombine even when attached to interacting "passenger" proteins. 

 

In a small number of cases, chaperones will succeed in refolding the 

passenger domain(s), but the process is very inefficient and depends 

entirely on the host cell's folding machinery (Fig. 2, #3). As a result, 

a small percentage of the correctly folded proteins can interact, 

which brings the two fragments of GFP close enough to recombine 

(Fig. 2, #5). Since folded GFP is stable, it remains folded and 

eventually (slowly) the GFP builds up in a way consistent with Le 

Chatelier’s Principle and can be detected (Fig. 2, #6). 

 

 

LANL's protein interaction detector is different than any others currently available. Instead of large, poorly soluble fragments of GFP, we 

have engineered small "tethers" or "tags" ( fragments of GFP that are 14 amino acids long) to tag the interacting test proteins. Detection of 

interacting proteins is then accomplished with a third fragment of GFP, the "detector". 

 



 

The general idea of the LANL approach is presented in Figure 3. Initial 

work was done to express GFP as two domains (Fig. 3, #1). The first 

domain, a hairpin structure, interacts instantly with the second expressed 

domain, the GFP strand 1-9 "detector" (Fig. 3, #2) to form a fully 

functional GFP (Fig. 3, #3). Taking the next step, expressing the first 

domain as two separate strands (Fig. 4, #5) does not create a funtional GFP 

even with the expression of the "detector" (Fig. 3, #5). 

 

Figure 3. LANL's novel approach with GFP: 

 

The LANL approach  is applied to protein-protein interactions by doing the 

following. Strand 10 of GFP(S10) is attached to the first test protein, say 

protein A. Strand 11 of GFP (S11) is attached to the second test protein, 

call it protein B in this example (Fig. 4, #1). Interaction of protein A with 

protein B is detected using GFP strands 1-9, the "GFP 1-9 detector." This 

system works by reducing entropy. Normally, S10 and S11 don't interact 

by themselves and the so-called 'three-body interaction' between S10, S11, 

and 1-9 is not energetically favorable and cannot happen. 

 

If test proteins A and B interact with each other, they bring 

the attached S10 and S11 close enough together to interact 

with the GFP 1-9 detector (Fig. 4, #2). Essentially, the 

interaction of protein A and protein B converts the 

energetically unfavorable three-body problem into an 

energetically favorable two-body problem (Fig. 4, #3). 

 

Figure 4. LANL's GFP approach reduces a 3-body system 

to a 2-body system. 

 

A researcher can do this by following these simple steps. First, a vector is created that includes short nucleotide section of GFP called a 

"microdomain" tag (strand 10 of GFP, or S10) appended onto the nucleotide sequence of the first protein of interest (protein X), to make 

protein X-S10. The vector also includes a different nucleotide section of GFP (strand 11 of GFP, or S11) appended onto the nucleotide 

sequence of another protein (protein Y). Protein Y is expressed from the same plasmid at a second ribosome binding site to give protein Y-

S11. The vector is transformed into a host cell, for example E. coli, containing a second plasmid expressing the GFP 1-9 detector. Determing 

whether protein X is interacting with protein Y is easily done by expressing the tagged proteins at the same time as the GFP 1-9 detector. If 

fluorescence is observed, the two proteins interact. 

 

This same transformation can be used to determine the solubility of the interacting proteins by staggering their expression. This is done in a 

similar way as LANL's solubility assay. By inducing expression of the tagged proteins first, shutting their expression off, and then inducing 

the expression of the GFP 1-9 detector, observing fluorescence indicates that the proteins not only interact, but they are soluble as well. 

 

Expanding this approach, it would be easy to create a library that contains thousands of target proteins to determine if they interact with 

thousands of other proteins. 
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Using LANL GFP for Drug Discovery 
 

Overview 

Another valuable use of LANL's GFP technology is to determine the effects of other molecules (small molecules, antibodies, 

aptamers, etc.) on a specific protein of interest. Determining such an effect could be done a couple of different ways depending 

upon which GFP technology will be employed. For example, if a researcher wants to study a protein that is naturally insoluble 

due to genetic mutation, that protein could be transformed into E. coli and expressed in a way similar to that described on the 

Solubility page of this website, which describes a split version of GFP. However, instead of immediately expressing the S1-10 

tag to complement the GFP tether, one could treat the cell with a library of small molecules first, then express S1-10. If a 

protein flouresces after treatment of a particular small molecule, whereas it did not before the treatment, it is safe to assume 

that small molecule has helped to correct the protein's solubility in some way. 

 

In a related way, our Folding Reporter could also be used to determine effects of other molecules on a protein of interest. The 

Folding Reporter reports on the success of a target protein’s folding and solubility. When LANL's engineered version of GFP 

is attached to the C-Terminus of a target protein, it mimics the folding success of that target protein. Thus, when the target 

protein folds correctly, GFP folds correctly and fluoresces. Conversely, when the target protein folds incorrectly, GFP folds 

incorrectly and fails to fluoresce. The Folding Reporter mimics the folding state of the target protein and the level of 

fluorescence is correlated with how well the target protein is folded. At LANL, Folding Reporter’s key application is evolving 

proteins for solubility in a high throughput format. But it could easily be used to determine the effect a particular cell treatment 

has on the target protein in a fast, high-throughput way. A researcher would simply need to place cells in a 96- or even 384-

http://network.nature.com/forums/neuroscience/1263
http://www.neuron.org/content/article/abstract?uid=PIIS0896627307010203


 

well format, treat each well with a different compound and quickly determine improved flourescence. In fact, this approach has 

been proven successful by Michael Hecht's group at Princeton doing research on Alzheimer's (see the technical library for 

more information). It is also being pursued by Dr. Greg Philipps at the University of Iowa to investigate RNA-protein 

interactions in vivo in E. coli (read the user feedback page). Please see our technical library for a long list of citations related to 

our Folding Reporter. 

 

Key Characteristics 

●    Robust 

●    Amenable to high-throughput 

●    Easy to determine increased solubility visually 
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History 
 

●Green Fluorescent Proteins (GFP) is a new technology, nobilized in 2008 
(r)

. 

    Osamu Shimomura first isolated GFP from the jellyfish Aequorea victoria, which drifts with the currents off the west coast of 

North America. He discovered that this protein glowed bright green under ultraviolet light. 

 

    Martin Chalfie demonstrated the value of GFP as a luminous genetic tag for various biological phenomena. In one of his first 

experiments, he coloured six individual cells in the transparent roundworm Caenorhabditis elegans with the aid of GFP. 

 

    Roger Y. Tsien contributed to our general understanding of how GFP fluoresces. He also extended the colour palette beyond green 

allowing researchers to give various proteins and cells different colours. This enables scientists to follow several different biological 

processes at the same time. 

 

    Douglas Prasher, a researcher at Woods Hole Oceanographic Institution in 

Massachusetts who originally isolated the gene for GFP, was not one of the Nobel recipients. Prasher freely gave the gene sequence for GFP 

to both Roger Tsien and Martin Chaflie. Doug Prasher's scientific colleagues at LANL would like to acknowledge Prasher for his 

embodiment of the concept of pure scientific collaboration. 

 

●LANL Overview 
Green Fluorescent Protein (GFP) has been around for many years and has been used in a lot of creative ways. Los Alamos National 

Laboratory researcher (LANL) Dr. Geoff Waldo, has spent the last decade improving the flexibility, usability, reliability and sensitivity of 

GFP by engineering it to have more desirable characteristics. His work has resulted in a GFP that fluoresces more brightly, does not perturb 

the protein of interest, and works reliably in a number of important scientific applications. Not only does it perform better than other tags, but 

it is faster and cheaper! 

 

Related products/documents from Interchim - BioSciences Innovations: 

Products HighLights Overview 
Split GFP: unique GFP system to increase S/N signal,  

 solve solubility/aggregation issues and it’s study, as well as protein/protein  interactions.  See PH-BB213b 

LEXSY2 protein expression system – combines scalability with full-eucaryotic machinery See PH-BB216c 

EvoGlow GFP: unique GFP able to express in anaerobic cells See PH-BB213e 

Recombinant protein purification 

Desalting tools (dialysis, gelfiltration, ultrafiltration) See B100 

Protein assays, colorimetric (BC Assay, Coo Acssay), and fluorimetric (LavaPep) See B191, BB191b 

Electrophoresis analysis: biochemicals for gels, pre-cast gels, stains, MW markers   See B194-208, BB198a 
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