Innovative biochemistry conjugation method from Interchim

Click Chemistry (Azide / alkyne reaction)
A versatile and reliable conjugation chemistry for linking covalently in very mild conditions

Click chemistry can be used for the synthesis of a variety of conjugates. Virtually any biomolecules can be involved, and labeling with small molecules, such as fluorescent dyes, biotin, and other groups can be readily achieved.

Chemistry
The Click chemistry involves the reaction between an azide and an alkyne (i.e. acetylene), forming a covalent chemical bond.

```
                    \           \                          \    \            \      \     \          \  \       \  \     \  \     \  \     \  \\
alkyne        \           \                          \    \            \      \     \          \  \   \ \ \ \ \   \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\
+                  \           \                          \    \            \      \     \          \  \   \ \ \ \ \   \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\
azide               \           \                          \    \            \      \     \          \  \   \ \ \ \ \   \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\
                        \           \                          \    \            \      \     \          \  \   \ \ \ \ \   \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\
                                      \                             \         \                          \           \      \                       \   \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\

\[ + \text{Cu(I)} \rightleftharpoons \text{triazole (conjugate)} \]
```

This Cu(I) catalyzed [3+2] azide-alkyne cycloaddition is also known as CuAAC reaction. It yields the efficient formation of a non-toxic triazole from biological building blocks that have been modified with non-perturbing azides and unactivated alkynes.

This process has unprecedented tolerance and reliability. It is pH-independent, and it can be carried out in water at ambient temperature. It applies to conjugation and solid phase immobilization.

Note: both azido and acetylenic groups are nearly never encountered in natural biomolecules. Hence, the reaction is highly bioorthogonal and specific.

The only needed things are azido- and alkyne-labeled biomolecules, dyes, and surfaces. Interchim BioScience provides a variety of reagents, notably in the Uptima range.

- **Standard Click Chemistry reagents** (Alkyne reagents) - CuAAC
 uses alkyne ligators and azide ligators, to activate i.e. amines (ZL5530 & ZL5540), or nucleic acids (with amidite-Alkynes)
 Alkyne and Azide react in presence of Copper(II)-TBTA complex FY2780

- **Copper-free Click Chemistry reagents** (DBCO & BCN reagents) - SPAAC
 use cyclooctynes ligators (DBCO, BCN) and azide ligators, to activate i.e. amines or other biomolecules
 DBCO/BCN and azide partners react directly (SPAAC reaction).

Uptima and FluorProbes NHS reagents are useful to incorporate an alkyne, an azide or directly a label on a aminated molecule

Reagents (for CuAAC)

- **Alkyne** reagents: Fluorescent – Fluor dyes
 Nucleotides
 Alkyne-activated ligands are used for CuAAC Click chemistry.

- **Azide** reagents: Fluorescent – FluorProbes dyes, Cy dyes
 Non Fluorescent labels (biotin) and ligands
 Azides are useful reagents for ligation of ligands via Click chemistries, Hydrazone ligation, or via Staudinger ligation.

- **Complementary** reagents for click chemistry: Azide ou Alkyne – NHS
 CLICK labeled molecules Capture Kit

- **Auxillary** reagents for click chemistry: Catalyzers and buffers

- Please contact interbiotech@interchim.com for other molecules to be custom-modified by acetylene or DBCO
Fluorescent Dyes - Alkynes: see FT-DQP790

- Alkyne-PEO-CR110
 Fluor 488-Acetylene (56-Carboxyfluorescein); Abs/Em = 501/525 nm
 FP-DQP790, 1mg / 5mg
- Alkyne-PEO-CR6G
 Fluor 525-Acetylene (56-Carboxyfluorescein 6G); Abs/Em = 522/544 nm
 FP-DQP800, 1mg / 5mg
- Alkyne-PEO-TAMRA
 Fluor 545-Acetylene (TMR-Ac-Acetylene); MW:647.73; Abs/Em = 546/565 nm
 FP-DQP810, 1mg / 5mg
- Alkyne-PEO-SRB
 Fluor 568 -Acetylene; Abs/Em = 568/584 nm
 FP-DQP820, 1mg / 5mg
- Alkyne-PEO-SR101
 Fluor 585 -Acetylene; Abs/Em = 584/603 nm
 FP-DQP30, 1mg / 5mg

* (with a sulfo-propyl substituent):
 Alkyne-Trisulfo-CY3
 Tri-SulfoCy3 -Acetylene; MW:761.92; Abs/Em = 550/570nm
 FP-1C830, 1mg / 5mg / 25mg / 100mg
- Alkyne-Trisulfo-CY5
 Tri-SulfoCy5 -Acetylene; MW:787.96; Abs/Em = 647/663nm
 FP-1C840, 1mg / 5mg / 25mg / 100mg
- Alkyne-Trisulfo-CY6
 Tri-Sulfo-Cy7-Acetylene; MW:1010.22; Abs/Em = 753/775nm
 * (with aethyl substituent):
 Alkyne-DiSulfo-CY3
 Disulfo-Eth-CY7-Acetylene; CF60 CO2 salt; MW:781.86; Abs/Em = 555/565nm; Soluble in DMSO
 FP-LQV030, 1mg
- Alkyne-DiSulfo-CY5
 Disulfo-Eth-CYS-Acetylene, CF60 CO2 salt; MW:807.90; Abs/Em = 649/666nm; Soluble in DMSO
 FP-LQV090, 1mg
- Alkyne-TetraSulfo-CY5.5
 TetraSulfo-Eth-CYS.5-Acetylene, CF60 CO2 salt; MW:1088.14; Abs/Em = 578/701nm; Soluble in DMSO
 FP-LQV230, 1mg
- Alkyne-DiSulfo-CY7
 Disulfo-Eth-CY7-Acetylene; CF60 CO2 salt; MW:833.93; Abs/Em = 748/776nm; Soluble in DMSO
 * (with a methyl substituent):
 Alkyne-Sulfo-CY3
 Monocys -Acetylene; MW:573.75; Abs/Em = 550/567nm; EC:96000; QY:0.15
 FP-1C4620, 1mg / 5mg / 25mg / 100mg
- Alkyne-DiSulfo-CY3
 DisulfoCy3 -Acetylene Na salt; MW:675.79; Abs/Em = 548/567nm; EC:162000; QY:0.15
 FP-1A6320, 1mg / 5mg / 25mg / 100mg
- Alkyne-DiSulfo-CY5
 DisulfoCy5 -Acetylene Na salt; MW:701.83; Abs/Im = 646/664nm; EC:271000; QY:0.28
 * (with a methyl substituent):
 Alkyne-DiSulfo-CY3
 DisulfoCy3 -Acetylene K salt; MW:691.91(+653.2); Abs/Em = 548/563nm; EC:162000; QY:0.61; CF260.0.03; CF280.0.26 – Solubility is good in Water, DMF, DMSO
 FP-O6390, 1mg / 5mg / 25mg / 100mg
- Alkyne-DiSulfo-CY5
 DisulfoCy5-Acetylene; MW:947.43; Abs/Em = 673/691nm; EC:199500; QY:0.84; CF260.0.20; CF280.0.03 – Solubility is good in Water, DMF, DMSO
 Inquire
- Alkyne-DiSulfo-CY5
 DisulfoCy5-Acetylene Ksalt; MW:717.84; Abs/Em = 649/662nm; EC:271000; QY:0.25; CF260.0.04; CF280.0.04 – Solubility is very good in Water, DMF, DMSO
 FP-SJ9060, 1mg / 5mg / 25mg / 100mg
- Alkyne-TetraSulfo-CY5.5
 TetraSulfoCy5.5 -Acetylene K salt; MW:1034.30; Abs/Em = 673/691nm; EC:199500; QY:0.84; CF260.0.20; CF280.0.03 – Solubility is good in Water, DMF, DMSO
 FP-O6410, 1mg / 5mg / 25mg / 100mg
- Alkyne-DiSulfo-CY7
 DisulfoCy7 -Acetylene K salt; MW:745.3; Abs/Em = 750/737nm; EC:240600; QY:0.84; CF260.0.04; CF280.0.04 – Solubility is good in DMF, DMSO, significant in water
 FP-O5590, 1mg / 5mg / 25mg / 100mg
- Alkyne-TetraSulfo-CY7.5
 TetraSulfoCy7.5-Acetylene tri-K salt; MW:1120.46(+1005.2); Abs/Em = 778/797nm; EC:222000; QY:0.89; CF260.0.09; CF280.0.09 – Solubility is good in Water, DMF, DMSO
 * (no sulfo):
 Alkyne-CY3
 Cy3 -Acetylene; MW:530.14; Abs/Em = 555/570nm; EC:150000; QY:0.31; CF260.0.04; CF280.0.09
 Inquire
- Alkyne-CY5
 Cy5 -Acetylene; MW:566.18; Abs/Em = 646/662nm; EC:250000; QY:0.2; CF260.0.03; CF280.0.04
 Inquire
- Alkyne-CY5
 Cy5 -Acetylene; MW:566.30; Abs/Em = 648/710nm; EC:209000; QY:0.2; CF260.0.02; CF280.0.03
 Inquire
- Alkyne-CY7
 Cy7 -Acetylene; MW:622.38; Abs/Em = 750/773nm; EC:199000; QY:0.23; CF260.0.02; CF280.0.029
 Inquire
- Alkyne-CY7.5
 Cy7.5-Acetylene; MW:722.40(+886.4); Abs/Em = 788/808nm; EC:223000
 Inquire

See technical sheets:
- FT-1A6320 (FluoProbes CYanine-Alkynes)
- FT-DQP790 (FluoProbes CYanine-DBCO)
- FT-HO7250 (FluoProbes CYanine-Azide)
- PH-BB060K Clickable Fluorescent dyes
● **Biotin Alkynes:**
Acetylene-PEO₄ -Biotin
MW:457.58; (M)
DQP650, 25mg / 100mg / 1g

● **PEO spacer(PEGs) - Alkynes:**
Acetylene-PEO₄ -Amine, - Acid, -NHS, -Maleimide: inquire +DQP61/3/4

● **Nucleotides - Alkynes:**
Propargyl-CEP-oligonucleotides are used for attachment of azide-containing reporter groups such as biotin or fluorescent dyes by click chemistry. This allows the synthesis of highly-modified DNA strands carrying multiple labels in a density that is not achieved by classic labeling techniques.

- **propargyl** is an alkyl functional group of 2-propynyl (structure: HC≡C–CH₂−).
- CEPs (Cyanethyl-N,N-diisopropyl Phosphoramidites) functional group is used to synthesize oligonucleotides by automated standard protocols.

5-Propargyloxy-dU CEP
5-Octadiynyl-dU CEP
Alkynyl-modifier-C6-dT CEP
5-(Propargyloxy)-2'-deoxyuridine
5-(1,7-Octadiyn-1-yl)-2'-deoxyuridine
5'-O-(Dimethoxytrityl)-5-(propargyloxy)-2'-deoxyuridine
5-Octadiynyl-TMS-dU CEP
5-Octadiynyl-TMS-dC CEP
5-Octadiynyl-dC CEP
5-Octadiynyl-TIPS-dU CEP

More reagents: inquire +BA0174; +DQI62,DQI57,MM982,ZC68/9,DQP20/1,ZC667/8,IX028,DQO71/2/3/5 | DQP21

2’-O- and 3’-O-Propargyl CEPs and other alkyne-containing CEPs (C8- TIPS- and TMS- versions)

More description here.
Azides Click Chemistry reagents

- **Fluorescent dyes - Azides:**
 Standard Dyes such as Cy3, Tamra or Texas Red have been thoroughly selected to cover the whole UV-Vis spectrum. Novel Alternative Dyes are available as well.

- **FluoProbes – Azides** are superior fluorescent dyes (see characteristics, protocol)

<table>
<thead>
<tr>
<th>Dye Code</th>
<th>Emission</th>
<th>Dye Code</th>
<th>Emission</th>
</tr>
</thead>
<tbody>
<tr>
<td>FluoProbes488 – Azide (494/519nm)</td>
<td>B38820</td>
<td>FluoProbes565A – Azide (563/592nm)</td>
<td>YE4990</td>
</tr>
<tr>
<td>FluoProbes647N – Azide (653/674nm)</td>
<td>YE5020</td>
<td>FluoProbes594 – Azide (591/617nm)</td>
<td>FJ0800</td>
</tr>
<tr>
<td>FluoProbes782 – Azide (738/800nm)</td>
<td>JV1940</td>
<td>FluoProbes831 – Azide (844/986nm)</td>
<td>JV7790</td>
</tr>
</tbody>
</table>

- **FluoProbes488 – Azide** is superior fluorescent dyes (see characteristics, protocol)

- **FluoProbes CYanine – Azides**: See technical sheet: FT-HO7250 (FluoProbes CYanine-Azide)

- **Classic fluorescent dyes +**:
 See PH-BB60K; incl. (Picolyl-) Azide – Fluorescent dyes.

- **Carboxyfluorescein-PEO azide**: More description here.
- **Carboxyfluorescein-dipivalate PEO azide**: More description here.
- **TET-PEO-azide**: More description here.
- **DANSYL-TEG-N3**: More description here.

- **Biotin Azides**
 Biotin-azide | ZC6710.
 Desthiobiotin-PEO azide | More description here.
 Biotin-PEO azide | More description here.

- **PEO spacer (PEGs) - Azides**: PEO2 to PEO8-Azides linkers and crosslinkers: inquire - DQP22/3, ZC684 to ZC689 - DQP66

 For example:
 Aminooxy-PEO-azide | More description here.
 Amino-PEO azide | More description here.

- **Nucleotides - Azides**: inquire

 Azide-CEP-oligonucleotides are used for attachment of azide-containing reporter groups such as biotin or fluorescent dyes by click chemistry. This allows the synthesis of highly-modified DNA strands carrying multiple labels in a density that is not achieved by classic labeling techniques.

 Azide is a functional group for click reactino with alhynes

 CEPs (Cyanoethyl-N,N-disopropyl Phosphoramidites) functional group is used to synthesize oligonucleotides by automated standard protocols.

 Inquire for a products list

- **Other Azides:**
 Folate-PEO2 azide | More description here.
 Tocopherol-PEO azide | More description here.
 Water soluble dansyl-PEO azide | More description here.
 PQQ-PEO azide | More description here.
 Cholesteryl-PEO azide | More description here.

 More: Ferrocene, -DNP, -DABSYL, -Pyrene : inquire

Activators for Click Chemistry

- **NHS activated Alkyne and Azide** - to activate amines(proteins)
 Alkyne Amine-Activator #ZL5532,
 Azide Amine-Activator #ZL5542
Auxiliary reagents for Click Chemistry: catalyzers; buffers:

- Copper sources, reduction and stabilization

The efficiency of a copper (Cu(I))-catalyzed Azide-Alkyne click chemistry reaction (CuAAC) strongly depends on the presence of copper ions in the +1 oxidation state (Cu(I)).

Different copper catalyst sources, reduction reagents and Cu(I) stabilizing ligands are available, however, for most bioconjugation applications the combination of CuSO₄ as copper catalyst source, sodium ascorbate as a reduction reagent and a water-soluble Cu(I) stabilizing ligand such as THPTA[1,2] or BTTAA[3,4] is recommended (Tab. 1).

An optimal balance between reaction speed and Cu(I) concentration can be achieved using THPTA or BTTAA in combination with Picoly-Azide detection reagents (Picoly-Azides of Biotin or Picoly-Azides of fluorescent dyes) that contain an additional internal copper chelating moiety[4].

Presolski et. al.[1] (Download pdf) and Hong et. al.[2] provide a general protocol for CuAAC reactions that may be used as a starting point for the set up and optimization of individual assays.

Table 1: Overview of available reaction reagents for Cu(I) catalyzed Azide-Alkyne click chemistry (CuAAC).

<table>
<thead>
<tr>
<th>Copper (Cu) catalyst</th>
<th>Reduction reagent</th>
<th>Cu(I) stabilizing Ligand</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuSO₄</td>
<td>Sodium Ascorbate</td>
<td>THPTA</td>
</tr>
<tr>
<td>CuBr</td>
<td></td>
<td>BTTAA</td>
</tr>
</tbody>
</table>

Available reaction reagents for Cu(I) catalyzed Azide-Alkyne click chemistry (CuAAC):

- **Protein Reaction Buffer Kit**
 - **MRU690**
 - Kit Contents: 2.5 ml Reaction Buffer (250 mM), 0.6 mg Additive 1, 11 mg Additive 2, 0.25 ml Copper (II) Sulfate (20 mM), Reducing Agent

- **Click Solvent** – Click chemistry grade
 - ZC6950, 1 ml
 - ZC6951, 10x 1 ml

- **CuSO₄ - click chemistry grade** – Click chemistry grade
 - 1H3690, 10 mg
 - 1H3691, 5x 10 mg

- **CuBr - click chemistry grade**
 - ZC6930, 5mg
 - ZC6931, 10x 5 mg

- **Na-Ascorbate – Click chemistry grade**
 - 10487F, 10 mg
 - 10487G, 10mg

- **THPTA**
 - MRU020, 100mg
 - MRU021, 500mg
 - MRU022, 1g

- **TBTA-Ligand**
 - ZC6940, 5mg
 - ZC6941, 10mg

- **BTTAA**
 - 2-(4-((bis((1-(tert-butyl)-1H-1,2,3-triazol-4-yl)methyl)amino)methyl)-1H-1,2,3-triazol-1-yl)acetic acid

- **Copper(II)-TBTA complex #FY2780**
 - See FT-FY2780

- **AzidoAniline Hydro.**
 - ZC6900

Selected references:
Fluorimetric assessment of Click Chemistry reaction.

The efficiency of Cu(I)-catalyzed Azide-terminal Alkyne Click Chemistry reactions (CuAAC) strongly depends on the presence of the copper catalyst in the +1 oxidation state (Cu(I)). While different copper sources, reduction reagents and Cu(I) stabilizing ligands are available, the Cu(II) salt CuSO₄ – in combination with sodium ascorbate (reduction reagent) and THPTA (Cu(I) stabilizing ligand) – has become the catalyst of choice for most biomolecule labeling applications.

Biomolecule labeling however, often requires optimization of reaction conditions (e.g. type of copper source, ligand or copper source/ligand ratio...). Assay performance (i.e. rate of product formation) can be conveniently monitored in real time using the pro-fluorogenic dye 3-Azido-7-hydroxycoumarin. The non-fluorescent Azide form of 3-Azido-7-hydroxycoumarin strongly increases its fluorescence upon Cu(I)-catalyzed conjugation to a terminal Alkyne that is triggered by formation of a triazole moiety (Fig. 1). Removal of unreacted dye before measurements is therefore not required.

When setting up a new CuAAC labeling assay, the general protocol provided by Presolski et al. and Hong et al. may be used as a starting point for subsequent optimization.

Figure 1: The pro-fluorogenic dye 3-Azido-7-hydroxycoumarin becomes highly fluorescent upon Cu(I)-catalyzed conjugation to a terminal Alkyne moiety. Progress of product formation can be monitored by measuring the fluorescence increase at 477 nm.

3-Azido-7-hydroxycoumarin IOK790, 1mg IOK791, 5mg

Abs/Em = 404/477 nm, Soluble in DMSO, DMF, MeOH, MeCN (rem: solution in DMSO and DMF are not suitable for longterm storage); (M)

Selected References:

CLICK labeled molecules Capture Kit

Click Chemistry Capture Kit WXS271, 1kit

The Click Chemistry Capture Kit provides all necessary reagents to covalently capture specific sub-classes of proteins by a Cu(I)-catalyzed azide-alkyne cycloaddition reaction (CuAAC). The proteins of interest need to be metabolically, enzymatically or chemically azido- or alkyne-tagged. Subsequently, the resin containing the covalently attached proteins can be washed with high stringency, virtually eliminating any non-specifically bound proteins. Upon protease digestion, this yields a highly pure peptide pool that is ideal for mass spectroscopy (e.g. LC MS/MS) based analysis.

Kit Contents:

7 ml Lysis buffer - store at 4 °C
4.8 g Urea - store at ambient temperature
1.5 ml Additive 1 - store at 4 °C
0.5 ml Copper (II) Sulfate (100 mM) - store at ambient temperature
400 mg Additive 2 - store at ambient temperature
7.7 g Agarose wash buffer - store at ambient temperature
10 Empty spin columns - store at ambient temperature
Detailed technical information

● **Nucleotides – Alkynes**

Alkyne-bearing nucleoside phosphoramidites enable click chemistry. An attractive strategy for nucleic acid conjugation involves the click reaction of alkyne-bearing oligonucleotides with azide-bearing species to join them via a triazole linkage. Interchim Biosciences offers options: Ethynyl-dU CEP, 5-Octadiynyl-dU CEP, 7-10 Alkynyl-Modifier-C6-dT CEP, and other new compounds.

Use of **5-Propargyloxy-dU CEP**; Employ acetonitrile diluent at the concentration recommended by the synthesizer manufacturer. Use standard coupling protocols; extended coupling times are not required. Cleavage from the solid support may be carried out by standard procedures. Nucleobase deprotection should be done at 55 °C for 8-12 hours. Extended heating is not recommended due to by-product formation.

<table>
<thead>
<tr>
<th>CEPs Nucleic acids</th>
<th>Product #</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-Octadiynyl-dU CEP</td>
<td>IV9770 .BA0308</td>
</tr>
<tr>
<td>CAS: 938186-76-6; MW: 879.98 – Store -20°C</td>
<td></td>
</tr>
<tr>
<td>3’-O(Diisopropylaminophosphino)-5’-O([4,4’-dimethoxytrityl])-5’-[N-hex-5-ynyl]-3(E)-acrylamido]-2’-deoxyuridine</td>
<td></td>
</tr>
<tr>
<td>A much superior reagent for the installation of an alkyne-bearing nucleoside into an oligonucleotide when click reactions are contemplated. The terminal alkyne is more flexible and extends farther away from the pyrimidine ring, thereby allowing more efficient ligation via click chemistry, even when multiple ligations to a single oligo are desired.</td>
<td></td>
</tr>
<tr>
<td>5-Propargyloxy-dU CEP</td>
<td>IV9780 .BA0174</td>
</tr>
<tr>
<td>CAS: MW: 784.83 – Store -20°C, dry</td>
<td></td>
</tr>
<tr>
<td>A modified nucleotides for introducing an alkyne into an oligonucleotide internally or at the 5'-terminus.</td>
<td></td>
</tr>
<tr>
<td>Alkynyl-modifier-C6-dT CEP</td>
<td>.BA0361</td>
</tr>
<tr>
<td>CAS: MW: 879.98 – Store -20°C, dry</td>
<td></td>
</tr>
<tr>
<td>3’-O(Diisopropylaminophosphino)-5’-O([4,4’-dimethoxytrityl])-5’-[N-hex-5-ynyl]-3(E)-acrylamido]-2’-deoxyuridine</td>
<td></td>
</tr>
<tr>
<td>This phosphoramidite features a well-established linker that places the alkyne at a sufficient distance from the oligonucleotide to allow efficient click conjugation.</td>
<td></td>
</tr>
<tr>
<td>5-(Propargyloxy)-2’-deoxyuridine</td>
<td>.PY7712</td>
</tr>
<tr>
<td>CAS: 85367-85-3; MW: 282.25 – Store at -20°C</td>
<td></td>
</tr>
<tr>
<td>5-(1,7-Octadiyn-1-yl)-2’-deoxyuridine</td>
<td>.PY7713</td>
</tr>
<tr>
<td>CAS: 909398-18-1; MW: 332.35 – Store at -20°C</td>
<td></td>
</tr>
</tbody>
</table>
5'-O-(Dimethoxytrityl)-5-(propargyloxy)-2'-deoxyuridine
CAS#: MW: 584.62 – Store +4°C

PY7714

C8-TMS-dU CEP
5-Octadecynyl-TMS-dU CEP
CAS#: MW: 907.12 – Store at -20°C, dry

A modified nucleotides for introducing a protected alkyne into an oligonucleotide

C8-TMS-dC CEP
5-Octadecynyl-TMS-dC CEP
CAS#: MW: 1010.24 – Store at -20°C, dry

C8-Alkyne-dC CEP
5-Octadecynyl-dC CEP
CAS#: MW: 991.28 – Store at -20 °C, dry

C8-TIPS-dU CEP
5-Octadecynyl-TIPS-dU CEP
CAS#: MW: 938.06 – Store at -20°C, dry

Azides for click chemistry

Azide reagents

Desthiobiotin-PEO azide
Desthiobiotin-TEG azide
CAS#: MW: 414.50 – Store at +4°C
for ligation of desthiobiotin via Saudinger ligation or click chemistry.

Biotin-PEO azide
Biotin-TEG azide, N-(11-Azido-3,6,9-trioxa-undecylamine)-D(+)-biotinamide
CAS#: MW: 444.55 – Store at +4°C
for ligation of biotin via Staudinger ligation or click chemistry.

See also: Biotin-Hydrazide FJ6741, Biotin-PEG-Azides 78631A
Amino-PEO-Azide
Amino-TEG-Azide: 1-Amino-11-azido-3,6,9-trioxaundecane
CAS: [34179-38-7], MW: 218.25 – Store at +4°C
A bi-functional linker with potential applications in oligonucleotide ligations.

Aminooxy-PEO-Azide
Aminooxy-TEG-Azide
CAS: [134179-38-7], MW: 234.25 – Store at +4°C
A bi-functional linker, Aminooxy-PEO-azide.

Other AminoOxy-PEOs: FT-JV2290

Folate-PEO-Azide
Folate-TEG-Azide
CAS: [1313026-32-2], MW: 641.64 – Store at +4°C
For the introduction by Click or Staudinger ligations of the folate tag for recognition by overexpressed folate receptors in cancer cells.

Tocopherol-PEO-Azide
Tocopherol-TEG-Azide
CAS: [412319-45-0], MW: 576.55 – Store at +4°C, in the dark
Water soluble dansyl-PEO-Azide
dansyl-TEG-Azide; 4-Dansyl-(4-aza-7,10,13-trioxa-15-azido)pentadecylsulfonate
C23H34N5NaO8S2; CAS: []; MW: 595.67 – Store at +4°C, in the dark

6-FAM-PEO-Azide
6-Carboxyfluorescein-TEG azide
CAS: [12319-45-0], MW: 576.55 – Store at +4°C, in the dark
fluorescein azide for fluorescein incorporation via Staudinger ligation or click chemistry. See also FP488-Azide

6-FAM-dipivalate-PEO-Azide
6-Carboxyfluorescein-dipivalate TEG azide
MW: 744.79 – Store at -20°C, dark

BBQ®-PEO-Azide
BlackBerry® Quencher 650 - TEG - azide
CAS: []; MW: 816.90 – Store at -20°C, dark
A useful long wavelength quencher for Click Chemistry and Staudinger ligation

BlackBerry® Quencher technology is covered under US Patent #7,879,986, Berry & Associates, Inc.
"BlackBerry is a trademark of Berry & Associates, Inc. Products derived from BlackBerry® Quencher reagents are sold exclusively for research and development use by the purchaser. They may not be used for clinical or diagnostic purposes without prior agreement and consent of Berry & Associates, Inc."

6-TET-PEO-Azide
6-Carboxy-2,4,7,7'-tetrachlorofluorescein-TEG azide
CAS: []; MW: 714.33 – Store at -20°C, dark
for tetrachloro-fluorescein incorporation via Staudinger ligation or click chemistry
PQQ-EO₂-Azide

Cholesteryl-PEO₂-Azide

CAS []; MW: 630.90; Store at -20°C, dark

for the installation of a methoxatin tag.

for the installation of a cholesteryl tag.
Related products lines
Interbiotec - BioSciences innovation – proposes a complete range of products for protein biochemistry.

Innovative and remarkable chemistries, conjugation methods, labeling and functionalisation
● Standard Click Chemistry reagents
● Copper-free Click Chemistry reagents (DBCO reagents)
● Staudinger reaction (effective conjugations/chemical modification)
● PEGylation reagents (conjugation reagents, linkers and building blocks)
● SAM reagents (Self-Assembled Monolayers for surface modification)
● SDA reagents (effective photo reactions)
● STELLA labeling (azocycloaddition reactions)
● Gold nano-particles and materials
● Carbone nanotubes
● ITO slides
● FluoProbes labeling agents

Desalting tools – CelluSep tubings, SpectraPor tubings, GebaFlex, FloatALyser, SlideALyser,

Products Highlights Overview

Information inquire
Reply by Fax: +33 (0) 4 70 03 82 60 or email at interbiotech@interchim.com

☐ I wish to receive the complete documentation about: ________________________________
__

Name: ___________________ 2nd name: ___________________ Position: ___________________

Company/Institute: _______________________________ Service, Lab: _______________________

Adress: ________________________________ Zip code: ___________ Town: ________________