

HiScript II 1st Strand cDNA Synthesis Kit (+gDNA Wiper)

W Vazyme

Version 7.0

Vazyme biotech co., ltd.

Introduction

The Vazyme HiScript II Reverse Transcriptase (+gDNA Wiper) is designed for the 1st strand cDNA synthesis with genomic DNA removal treatments. The HiScript II Reverse Transcriptase is a new generation reverse transcriptase optimized from the M-MLV (RNase H-) Reverse Transcriptase. The half-life of HiScript II at 50°C is > 240 min. Even at 55°C, the HiScript II can stay stable for a long time, which significantly benifits the transcription of RNA templates with complex secondary structures. In addition, the HiScript II has a improved template affinity and cDNA synthesis efficiency. It has a good resistance to most RT-PCR inhibitors and is suitable for long-fragment cDNA amplification (as long as 20 kb).

The residual genomic DNA in RNA template can be removed rapidly and completely after a treatment (42° C for 2 min) with the 4× gDNA Wiper. The $10 \times$ RT Mix contains an optimized buffer and dNTPs. The HiScript II Enzyme Mix contains the HiScript II Reverse Transcriptase and the RNase inhibitor. The Oligo- $(dT)_{23}$ VN has a better affinity to Ploy A* RNA than Oligo- $(dT)_{18}$. In addition, random hexamers and gene-specific primers (GSP) are also optional.

Contents of Kits

Components	R212-01 50 rxn (20 µl/rxn)	R212-02 100 rxn (20 µl/rxn)	
RNase free ddH ₂ O	1 ml	1 ml	
4× gDNA Wiper Mix	200 μΙ	400 μΙ	
10× RT Mix ^a	100 μΙ	200 μΙ	
HiScript II Enzyme Mix b	100 μΙ	200 μΙ	
Oligo-(dT) ₂₃ VN (50 µM)	50 μl	100 μΙ	
Random Hexamers (50 ng/µl)	50 μl	100 μΙ	

a. contains dNTPs.

Storage

All the components should be stored at -20°C.

Protocol

Note: 1. Use high quality total RNA with high intergrity for reverse transcription.

- 2. To avoid RNase contamination, please keep the experiment area clean, wear clean gloves and masks, and use RNase-free tubes and tips.
- 3. Primer selection (Oligo-(dT)₂₂VN, Random hexamers, or GSP)

If the cDNA prodcuct will be used for PCR

- For eukaryotic RNA tempaltes, generally, use Oligo-(dT)₂₃VN to obtain the highest yield of full-length cDNA.
- Use gene-specific primer (GSP) to obtain the highest specificity. However, switch to Oligo-(dT)₂₃VN or random hexamers if GSP fails in the 1st-strand cDNA synthesis.
- Random hexamers with the lowerst specificity can be used for RNA templates, including mRNA, rRNA, and tRNA. Use random hexamers when Oligo-(dT)₂₃VN or GSP fails in cDNA synthesis due to complex secondary structure, high GC content, or prokaryotic RNA template.

If the cDNA prodcuct will be used for qPCR

■ Use the mixture of Oligo-(dT)₂₃VN or random hexamers.

1. If the cDNA prodcuct will be used for PCR

1.1. RNA Denaturation*

Mix the following components in a RNase-free PCR tube:

RNase free ddH ₂ O	to 12 µl	
Oligo (dT) ₂₃ VN (50 μM)		
or Random hexamers (50 ng/μl)	1 µl	
or Gene Specific Primers (2 μM)		
Total RNA	10 pg-5 μg	
or Poly A⁺ RNA	10 pg-500 ng	

Incubate at 65°C for 5 min and then chill on ice immediately for 2 min.

Note: * RNA denaturation benifits the cDNA yield. However, for cDNA < 3 kb, please skip the denaturation step.

1.2. Removal of Genomic DNA

Add 4 µl of 4× gDNA Wipter to the mixture of **Step 1.1** (12 µl), mix thoroghtly, and incubate at 42°C for 2 min.

b. contains RNase inhibitor.

1.3. Mix the following components in a RNase-free PCR tube:

Mixture of Step 1.2.	16 µl	
10× RT Mix	2 μΙ	
HiScript II Enzyme Mix	2 μΙ	
1.4. Start the 1st-strand cDNA synthesis.		
25°C*	5 min	
F0°C**		
50°C**	45 min	

Note: * Only necessary when using random hexamers. Please skip this step when using Oligo-(dT)₂₃VN or Gene Specific Primers (GSP).

The products can be used for PCR immediately or be stored at -20°C for 6 months. However, it is recommended to stored at -80°C and make aliquots to avoid repeated freezing and thawing.

2. If the cDNA prodcuct will be used for qPCR

2.1. Removal of Genomic DNA

Mix the following components in a RNase-free microtube by pipetting, and incubate at 42°C for 2 min.

RNase free ddH ₂ O	to 16 μl	
4× gDNA Wiper Mix	4 µl	
Oligo-(dT) ₂₃ VN (50 μM)	1 μΙ	
Random hexamers (50 ng/µl)	1 μΙ	
Total RNA	10 pg-1 μg	
or Poly A⁺ RNA	10 pg-100 ng	
2.2. Mix the following components in a RNase-fre	e PCR tube:	
Mixture of Step 1.2.	16 μΙ	
10× RT Mix	2 μΙ	
HiScript II Enzyme Mix	2 μΙ	
2.3. Start the 1 st -strand cDNA synthesis.		
25℃	5 min	
50°C*	15 min	
85℃	2 min	

Note: * For templates with complex secondary structure or high GC-content, the temperature can be increased to 55°C, which will benefit the yield.

The products can be used for PCR immediately or be stored at -20°C for 6 months. However, it is recommended to stored at -80°C and make aliquots to avoid repeated freezing and thawing.

^{**} For templates with complex secondary structure or high GC-content, the temperature can be increased to 55°C, which will benefit the yield.