Enzytec[™] Liquid Sucrose / D-Glucose / D-Fructose

07.05.2019

Ref. E8190

page 1 / 1

Enzymatic assay for foodstuff and other sample materials 2×50 ml R1 $/ 2 \times 12.5$ ml R2 (50 assays)

For *in vitro* use only Store between +2 and +8°C

Principle

Enzymatic test with ß-Fructosidase (Invertase), Hexokinase (HK), Phosphoglucose Isomerase (PGI) and Glucose-6-Phosphate Dehydrogenase (G6P-DH). NADH is produced and is measured at 340 nm:

Sucrose + H_2O — G-Fructosidase — G-Glucose + G-Fructose D-Fructose + G-Fructose + G-Fructose + G-Fructose + G-Phosphate + G-Phosphate + G-Phosphate + G-Phosphate — G

Reagents

The reagents are ready-to-use.

Reagent 1: two vials ≥ 50 mL (NAD, ß-Fructosidase, ATP, PGI)

Reagent 2: two vials ≥ 12.5 mL (HK, G6P-DH)

The reagents are stable up to the end of the indicated month of expiry, if stored at $2-8\,^{\circ}\text{C}$. Do not freeze the reagents. Let the reagents reach the laboratory temperature before use (20 - 25 $^{\circ}\text{C}$).

The general safety rules for working in chemical laboratories should be applied. Do not swallow! Avoid contact with skin and mucous membranes.

This kit may contain hazardous substances. For hazard notes on the contained substances, please refer to the appropriate material safety data sheets (MSDS) for this product, available online at www.rbiopharm.com. After use, the reagents can be disposed of with the laboratory waste. Packaging materials may be recycled.

Sample preparation

- Use liquid and clear samples directly, or after dilution into the relevant measuring range (see test performance)
- Filter or centrifuge turbid solutions
- Degas samples containing carbon dioxide
- Clarify samples containing proteins or fat with Carrez clarification
- Crush and homogenize solid or semi-solid samples and extract with water; filtrate or centrifuge, or use Carrez clarification if necessary
- For fat containing samples, weigh sample into a volumetric flask (min. 50 ml) and extract with hot water; cool to allow the fat to separate; make up to the mark with water, remove the fatty layer on the top and filter the aqueous part
- Adjust the pH to approx. 7.0 by adding KOH / NaOH to acidic samples, or by adding HCl to alkaline samples

Assay procedure

Wavelength: 340 nm Optical path: 1 cm

Temperature: 20 – 25 °C / 37 °C

Measurement: Against air or against water

Sample solution: Against all of ag

	Reagent Blank (RB)	Samples
Sample / Standard	-	100 µl
Dist. water	100 µl	=
Reagent 1	2000 µl	2000 µl
Mix, incubate for approx. 15 min. at 20 – 25 °C. Read absorbance A1, then add:		
Reagent 2	500 µl	500 µl

Mix, wait until the end of the reaction (approx. 15 min. at 20 - 25 $^{\circ}\text{C}$). Read absorbance A2.

Reagent blank must be performed once for every run, and subtracted from every sample during calculation of results.

Calculation of results

Total-Sugar (Sucrose, D-Glucose, D-Fructose)

 $\Delta A = (A_2 - df x A_1)_{sample} - (A_2 - df x A_1)_{RB}$

With df = dilution factor of optical densities, because of reagent volumes:

df = (sample + R1) / (sample + R1 + R2) = 0.808.

 $\begin{array}{l} \textbf{c} = (\text{V x MW x } \Delta \text{ A}) \, / \, (\epsilon \, \text{x d x v x 1000}) \quad [\text{in g/l of Total sugar}] \\ \textbf{c} = (2.600 \, \text{x 180.16 x } \Delta \text{ A}) \, / \, (\epsilon \, \text{x 1 x 0.1 x 1000}) \end{array}$

It results for the determination at 340 nm (ϵ = 6.3 l x mmol⁻¹ x cm⁻¹): C _{Total Sugars} [g/l] = **0.744** x Δ A

The result includes the amount of Sucrose, D-Glucose and D-Fructose which are present in the sample. It is calculated as "Total Sugars", with the molecular weight of Glucose (180.16 g/mol).

Calculation in solid samples

Content_{Analyte} [g/100 g] =
$$\frac{C_{Analyte} [g/l]}{\text{weightennel}} \times 100$$

Test performance

Specificity

The test is specific for Sucrose, D-Glucose and D-Fructose. Oligosaccharides of the Raffinose type will hydrolyzed, but more slowly than sucrose.

Measuring range

The recommended measuring range lies between 10 and 1500 mg/l (Sucrose, D-Glucose, D-Fructose). When values exceed this range, samples should be diluted into the range 100 to 1500 mg/l.

Sensitivity

The Limit of Detection (LoD) and Limit of Quantification (LoQ) where determined according to the method DIN 32645:2008-11:

- LoD = 6 mg/l (Total Sucrose)
- LoQ = 10 mg/l (Total Sucrose)

Automation

Applications for automated systems are available on request.

Disclaimer

The data corresponds to our present state of technology and provides information on our products and their uses. R-Biopharm makes no warranty of any kind, either expressed or implied, except that the materials from which its products are made are of standard quality. Defective products will be replaced. There is no warranty of merchantability of this product, or of the fitness of the product for any purpose. R-Biopharm shall not be liable for any damages, including special or consequential damage, or expense arising directly or indirectly from the use of this product.

