

Fura-2 Near Membrane (NM) AM

Near-membrane calcium indicator, Cell-Permeant

Product Description

Name: Fura-2 Near Membrane (NM) AM,

near-membrane calcium indicator, Cell-

Permeant

FFP-18 AM

Catalog Number: FP-AM606A, 1mg FP-AM606B, 20 x 50 μg

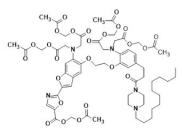
FP-AM606C, 10 x 50 μg

Structure & MW= 1 296.33 g/mol

Properties: $C_{62}H_{81}N_5O_{25}$

physical

Soluble: H₂0 (salt form), DMSO (AM form)

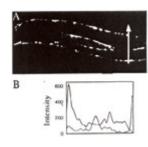

optical **Absorption / Emission:**

335 / 505 nm for Ca²⁺ bound form,

 $363 \ / \ 512 \ nm$ for unbound form

other $\mathbf{K_d}$ of $\mathbf{Ca^{2+}}$ -Binding : 400nM

Storage: –20°C Protect from light and moisture



Introduction

Unlike other hydrophobic dyes, near membrane dyes have a piperazine collar to latch the dye into the membrane, leaving the chelating portion to measure calcium in the gates. Our near-membrane UV-excitable indicators Fura-2 NearMem (formerly FFP-18), and Indo-1 NearMem (formerly FIP-18), have enjoyed considerable success for their applications, because unlike other hydrophobic indicators, they do not get lost in the membrane.

Directions for use

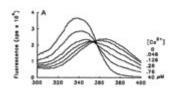


Fig. 6.12

Figure 6.11 shows the distribution of the dye Fura-2 NearMem in the plasma membrane. Figure 6.12 is a plot of fluoresence intensity due to Fura-2 NearMem as a function of the distance from the cell membrane. FIG. 6.12 is a plot of the excitation spectra of a titration of Fura-2 NearMem with calcium, where emission was set at 500 nm.

Technical and scientific information

References

- Carr L. et al., Visualisation of an nsPEF induced calcium wave using the genetically encoded calcium indicator GCaMP in U87 human glioblastoma cells, *Bioelectrochemistry*, 119, pp 68-75 (2018)
- **Davies E.V.** *et al.*, Near membrane Ca²⁺ changes resulting from store release in neutrophils: detection by FFP-18, *Cell Calcium*, 19:4, pp 355-362 (1996)
- Hallett M. B. et al., Optical Methods for the Measurement and Manipulation of Cytosolic Calcium Signals in Neutrophils, *Neutrophil*, pp 191-205, Part of the Methods in Molecular Biology book series (MIMB, volume 2087) (2019)
- Sage S. et al., Pericellular Ca²⁺ recycling potentiates thrombin-evoked Ca2+ signals in human platelets, *Physiological Reports Published* Vol. 1 no. e00085 (2013) <u>Abstract</u>
- Walford T. *et al.*, Nicergoline inhibits human platelet Ca2+ signalling through triggering a microtubule-dependent reorganization of the platelet ultrastructure, *British Journal of Pharmacology*, Volume 173, Issue 1, Pages 234–247 (2016) Abstract

Related products

- Fura-2 AM, FP-42776A
- Fura-FF AM, FP-AM629A

• Fura-2 LR, AM, FP-AM603A

Ordering information

Catalog size quantities and prices may be found at http://www.interchim.com. Please inquire for higher quantities (availability, shipment conditions).

For any information, please ask : FluoProbes $^{\text{@}}$ / Interchim; Hotline : $\pm 33(0)4\ 70\ 03\ 73\ 06$

Disclaimer: Materials from FluoProbes® are sold **for research use only**, and are not intended for food, drug, household, or cosmetic use. FluoProbes® is not liable for any damage resulting from handling or contact with this product.