NHS / sulfo-NHS

Product Information

Catalog #:
UP04594A, 500mg
UP04594B, 5g

Name:
NHS (N-hydroxysuccinimide)
C4H5NO3
MW : 115.1
CAS [6066-82-6]

Catalog #:
UP54422A, 500mg

Name:
Sulfo-NHS (N-Hydroxysulfosuccinimide)
C4H4NO6SNa
MW : 217.14
CAS [106627-54-7]

Storage: +4°C

Applications:
protein modification: conversion of carboxyl groups to amine-reactive NHS esters. Largely used as activator to mediate EDC reaction on carboxyls.

Introduction
• Improves the yield of EDC-mediated amidation/coupling
• Modify carboxyl in amines-reactive (sulfo)NHS esters
• Sulfo-NHS derivatives are water soluble, allowing crosslinking in physiologic solutions

Directions for use

Handling and Storage
NHS and SulfoNHS should be stored at +4°C. Once opened, care should be taken to avoid moisture.

Protocol (r)
This standard protocol is designed to conjugate a carboxyl-containing molecule (B) to an amine-containing molecules (A) by EDC mediated amidation with (sulfo)NHS. Each molecule tandem to conjugate may require adaptations.

1/ NHS Ester Activation of molecule B
- Add 0.4 mg EDC (~2 mM) and 0.6 mg of NHS or 1.1 mg of sulfo-NHS (~5 mM) to 1 ml of Protein #B solution.
- Mix reaction components well and react for 15 minutes at room temperature.
- (Optional): Add 1.4 µl of 2-mercaptoethanol (final concentration of 20 mM) to inactivate the EDC.
- (Optional): Separate activated Protein #B from excess EDC, EDC-byproducts, NHS (and if used 2-mercaptoethanol) using an appropriate desalting column that has been equilibrated with PBS. Recover the fraction containing the activated protein. The fractions containing protein can be identified with standard assays, we recommend a rapid colorimetric assay (Coo Assay), and not a direct spectrometric measurement at 280 nm because NHS and Sulfo-NHS absorb strongly at 260-280 nm.

2/ Reaction with amine-contain molecule A
- If desalting of B was not performed (i.e., buffer not exchanged using a desalting column), then raise buffer pH above 7 using concentrated PBS or other non-amine buffer such as sodium bicarbonate.
- Add Protein A to the solution containing activated Protein B.
- Mix the solution well and then allow reaction to proceed for 2 hours at room temperature.

Contact your local distributor
uptima@interchim.com
FT-UP54422

(Optional): Quench reaction by adding hydroxylamine to a final concentration of 10 mM. This method of quenching hydrolyzes any non-reacted NHS groups present on the surface of Protein B, resulting in regeneration of the original carboxyl groups. Other means of quenching involve adding 20-50 mM Tris, lysine, glycine, or ethanolamine; however, these primary amine-containing compounds will result in modified carboxyls on protein B.

Technical and Scientific Information

N-hydroxysuccinimide (NHS) reacts amines, and most interestingly with unstable reactive o-acylisourea. An important application is to mediate the reaction of carbodiimides with carboxyl groups containing molecule (B) to conjugate them with amine containing molecules (A).

- **EDC mediated amidation**

 reaction scheme:

 ![Chemical structure](image)

 Carbodiimide EDC (EDAC, UP52005) is a dehydrating agent used to activate carboxylate groups in (unstable) reactive o-acylisourea. Now, the formed group is unstable and short-lived in aqueous solution. As a result, EDC by itself is not particularly efficient in crosslinking because hydrolysis of the o-acylisourea, regenerating the initial carboxyl group, competes largely with the desired reaction with amines. Thus a privileged method consists to add NHS, which reacts with the o-acylisourea to yield a semi-stable amine reactive NHS-ester. The final reaction with amines is greatly favored, yielding a stable amine bond. This permits two-step crosslinking procedures, which allows the carboxyl groups eventually present on molecule A to remain unaltered.

 Although prepared NHS or Sulfo-NHS esters are sufficiently stable to process in a two-step reaction scheme, both groups will hydrolyze within hours or minutes, depending on the water-content and pH of the reaction solution. (NHS esters have a half-life of 4-5 hours at pH 7, 1 hour at pH 8, and only 10 minutes at pH 8.6). Procedures for extraction and drying may be developed to prepare stable NHS-activated molecules, but best results are obtained when NHS-activated molecules are used promptly for reaction to the amine containing targets.

 The activation reaction with EDC and Sulfo-NHS is most efficient at pH 4.5-7.2, and EDC reactions are usually performed in MES buffer at pH 4.7-6.0. Reaction of Sulfo-NHS-activated molecules with primary amines is most efficient at pH 7-8, and Sulfo-NHS-ester reactions are usually performed in sodium phosphate buffered saline (PBS) at pH 7.2-7.5. For best results in two-step reactions, perform the first reaction in MES buffer (or other non-amine, non-carboxylate buffer) at pH 5-6, then raise the pH to 7.2-7.5 with phosphate buffer (or other non-amine buffer) immediately before reaction to the amine-containing molecule. EDC activation can be quenched by inactivation with 2-mercaptoethanol (2-ME), or the excess reagent can simply be removed (as well as the reaction pH adjusted) by buffer exchange with a desalting column (see Related Pierce Products). For additional discussion of EDC/NHS chemistry, including many example applications and protocols, consult the book by Hermanson (see Related Pierce Products).

- **NHS vs SulfoNHS / solubility**

 N-hydroxysulfosuccinimide (Sulfo-NHS) is the sulfonated analog of NHS. Both NHS and Sulfo-NHS are soluble in aqueous and organic solvents. However, activation with NHS decreases water solubility of the modified carboxylate molecule, while activation with Sulfo-NHS (by virtue of the charged sulfonate group) preserves or increases water solubility of the modified carboxylic acid molecule.

Related products

- **EDAC # UP52005A**
- **DCC #01202A**

Contact your local distributor

uptima@interchim.com
FT-UP54422

- Hydroxylamine #13072
- DSS / BS3#UP28065A/#UP54940A
- (sulfo)SMCC #UP3425A/#UP17412A
- MES Buffer GS2960
- PBS Buffer#UP68723A

References

Ordering information

Catalog size quantities and prices may be found at http://www.interchim.com
Please inquire for higher quantities (availability, shipment conditions).

For any information, please ask : Uptima / Interchim; Hotline : +33(0)4 70 03 73 06

Disclaimer : Materials from Uptima are sold for research use only, and are not intended for food, drug, household, or cosmetic use. Uptima is not liable for any damage resulting from handling or contact with this product.