

Bis-Pyrenyl Phospholipase A Substrates

Fluorogenic substrates for phospholipase A1 or A2

Product Information

Product name	Structure	MW	λ _{exc} \λ _{em· max} .	CAS
cat.number		(g·mol ⁻¹)	(nm)	
1,2-Bis-(1-Pyrenedecanoyl)-sn-glycero-3-phosphocholine FP-204623, 1mg	C ₆₀ H ₇₂ NO ₈ P	966.20	342/475	
BPB-PC 1,2-bis-(1-pyrenebutanoyl)-sn-glycero-3-phosphocholine FP-95915A, 1mg	C ₄₈ H ₄₈ NO ₈ P	797.87	342/475	80115-55-5

Storage: -20°C >1 year. (M) Protect from light and moisture

bis-pyrenyl phospholipase A probes (FP-204623, FP-95915A) both emit at ~470 nm, indicating that their adjacent pyrene fluorophores (structure) form excited-state dimers. Phospholipase A-mediated hydrolysis separates the fluorophores, which then emit as monomers at ~380 nm. These substrates have proven to be effective phospholipase A2 substrates in model membrane systems; however, it has been reported that 1,2-bis-(1-pyrenebutanoyl)-sn-glycero-3-phosphocholine (FP-95915A) is highly resistant to degradation by phospholipases in human skin fibroblasts. 1,2-Bis-(1-pyrenebutanoyl)-sn-glycero-3-phosphocholine has been used in a sensitive, continuous assay for lecithin:cholesterol acyltransferase (LCAT).

Directions for use

Protocol may be found in the literature.

References

- Curran AR, et al. Modulation of folding and assembly of the membrane protein bacteriorhodopsin by intermolecular forces within the lipid bilayer." *Biochemistry* 38, 9328-9336 (1999)
- **Pap EH** *et al.* The interaction between protein kinase C and lipid cofactors studied by simultaneous observation of lipid and protein fluorescence.", *J Biol Chem* 270, 1254-1260 (1995)

Related products

- β-py-C₁₀-HPM, FP-31900A
- β-py-C₁₀-HPC, FP-73407A

- β-py-C₁₀-CPG, FP- 73498A
- Ionomycin, FP-53989A

Ordering information

Catalog size quantities and prices may be found at http://www.fluoprobes.com Please inquire for higher quantities (availability, shipment conditions). For any information, please ask: FluoProbes® / Interchim; Hotline: +33(0)4 70 03 73 06

Disclaimer: Materials from FluoProbes® are sold **for research use only**, and are not intended for food, drug, household, or cosmetic use. FluoProbes® is not liable for any damage resulting from handling or contact with this product.

