Test for the detection of Mycoplasma by qPCR analysis

e-Myco™VALiD-Q Mycoplasma qPCR Detection Kit

RUO

REF

 \sum_{50}

BACKGROUND INFORMATION

Mycoplasmas are small, round or filamentous prokaryotic organisms which are a frequent contaminant of cell cultures. Mycoplasma depend on their hosts for many nutrients due to their limited biosynthetic capabilities. Up to 30-85% of cell cultures may be contaminated with mycoplasmas, the main contaminants being the species *M.orale, A.laidlawii, M.arginini* and *M.hyorhinis*. Although these mycoplasmas do not usually kill contaminated cells, they are difficult to detect and can cause a variety of effects on cultured cells, including changes in metabolism growth, viability and morphology, there by altering the phenotypic properties of the host cells. Many methods are available for detection of mycoplasma, including isolation in broth/agar culture, direct or indirect fluorescence staining, ELISA, immunostaining, direct or indirect PCR. Among those methods, direct PCR is the highly sensitive, specific and convenient method when the primer design is optimized.

The e-Myco™ VALiD-Q Mycoplasma qPCR Detection Kit is composed of a set of primers and probe that are specific for the highly conserved mycoplasma16S-rRNA coding region including M.pneumoniae, M.argnini, M.hyorhinis, M.fermentans, M.orale and A.laidlawii. The kit is designed to detect the presence of mycoplasma that might contaminate biological materials such as cultured cells. Also, the kit can detect mycoplasma within 90minutes sensitively up to 10CFU/ml and includes internal control for verifying a qPCR run as well as positive control DNA.

PRINCIPLES

- The real-time qPCR(quantitative polymerase chain reaction) DNA amplification technology shows high sensitivity and specificity for direct detection of pathogen (antigen). iNtRON developed a novel platform technique about primer design called CLP™ (complementary locking primer) technology which provides flexibility in Tm (melting temperature) of primer design for optimization of reaction condition, and maximizes PCR specificity and sensitivity through the control of non-specific priming.
- The kit contains all reagents required for real-time polymerase chain reaction: nucleotides, primer and probes, reaction buffer, polymerase and controls. After rehydration of the components the PCR Master mix is easily prepared by just adding the Inhibition Control DNA and Taq DNA polymerase to the Primer & Probes.
- The PCR is initiated with a 5 minute high-temperature step to melt all nucleic acids and to activate the polymerase. In a successful PCR, the presence of mycoplasmas will be indicated by a signal in the FAM channel.

KIT CONTENTS

Contents	Composition
2X qPCR Master Mix Solution	Real-time PCR Reaction solution < 0.01% dATP, dTTP, dGTP, dCTP < 0.01% Hot start PCR enzyme < 0.01% PCR additive materials
Detection Solution	Mycoplasma Detection solution 0.001% Primer /probe for Mycoplasma 0.001% Internal control primer pair 0.001% Internal control DNA
DNase/RNase Free Water	Ultrapure sterilized distilled water
Positive Control (External PC)	Mycoplasma positive control < 0.001 % Recombinant DNA contained 16S sequence of M. hyorhinis
Instruction Manual	

STORAGE AND STABILTY

- Storage condition: Store the product at -25~-15°C after receiving.
- Expiration: e-Myco™VALiD-Q Mycoplasma PCR Detection Kit can be stored for up to 12
 months without showing any reduction in performance and quality under appropriates or age
 condition. The expiration date is labeled on the product box.

APPLICATION

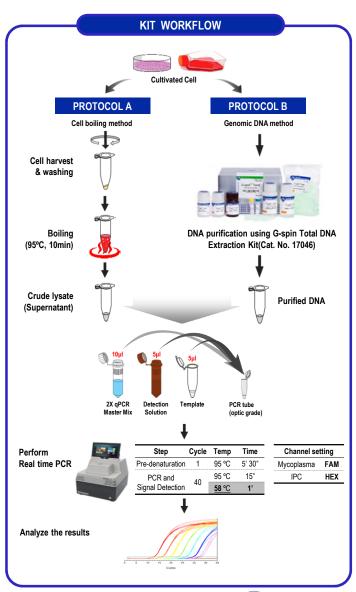
The kit is used for the detection of mycoplasma species that are most commonly encountered in cell culture, including *M.peumoniae*, *M.arginini*, *M.fermentans*, *M.hyorhinis*, *M.orale*, and *A. laidlawii*. Furthermore, this kit can detect other various species of mycoplasma.

MATERIALS REQUIRED BUT NOT PROVIDED

- Realtime PCR Instrument
- Pipettes
- Centrifuge for micro-centrifuge tubes
- Disposable gloves
- G-spin total Extraction Kit (Cat. 17045)
- Sterile pipette tip (with filter)
- Vortex mixer

PACKAGING INFORMATION AND STORAGE

25245


Contents	Storage	Amount
2X qPCR Master Mix Solution	-25 ~ -15°C	500 μ l x 1 vial (10 μ l / test × 50 tests)
Mycoplasma Detection Solution	-25 ~ -15°C	250 µl x 1 vial
Positive Control (External PC)	-25 ~ -15°C	25 µl x 1 vial
DNase/RNase Free Water	-	250 μl x 1 vial
Manual	-	1 ea

NOTICE

- To prevent contamination of mycoplasma DNA during experimental procedure, always wear gloves during sample preparation and PCR reaction setup.
- To avoid false positives, water used in PCR reactions can be UV-irradiated.
- · If no internal positive control signal, it shows the problem during PCR process. Please re-test.
- If there is non-specific signal in negative control, it could be due to the contamination or overused template. Please re-test with proper amount of template.

SHELF-LIFE

- · 12 months from manufacturing date.
- . Within 3 months after opening, within expiry date of the kit.

PROTOCOL

You can use this protocol just for detecting the contamination of mycoplasma. However, if you want to perform genotyping for the detailed determination of species, please purify the genomic DNA of suspected Mycoplasma-infected cells using our G-spin Total DNA Extraction Kit (Cat.No.17046). You may use simply this protocol or your other general boiling methods.

[TECHNICAL TIP]

- 1. Use clean, disposable gloves when performing the assay and make sure that the work area is clean prior to starting the assay setup.
- 2. Keep your reagents and PCR mixture tubes on a cold block during reaction setup.
- 3. Use positive displacement pipettes.
- 4. The amplification and detection areas should be physically separated; i.e., do not use the same bench area to set up the PCR reactions and run your gels.

PROTOCOL A: Using the Boiling Extract Method

- 1. Prepare cell suspensions from the test cell culture in a 1.5 ml tube. Then count cell numbers by general counting methods. You need at least 5x10⁴ cells per test.
 - Note 1: Harvest adherent cells with trypsin-EDTA solution using standard techniques. Pipette 1 ml of TE-treated adherent cells. Generally, with suspension cells, such as K562, you need not treat with TE solution. We recommend that you count the cells. You should prepare at least 5x104 cells per test.
 - Note 2: Strong mycoplasma infections are detected in as little as 10~100 cells, while weak infections require cells over 5,000~50,000 cells. You can dilute the template according to the infection rates you suspect
- 2. Transfer the counted cells (over 5x104 cells) to a 1.5 ml tube. Spin the tube in a microcentrifuge for 10~15 seconds. Carefully decant the supernatant.
- 3. Resuspend the cells in 1 ml of sterile PBS or DPBS solution for washing.
- Spin the tube in a microcentrifuge for 10~15 seconds. Carefully decant the supernatant. Note: [Option] Repeat this wash step once more
- 5. Resuspend the cell pellets in 100 µl of sterile PBS or DPBS solution. Note: If you want the best result, use of PBS solution is better than Tris (10 mM, pH 8.5), TE (10 mM Tris, 0.1 mM EDTA), or autoclaved DW.
- 6. Heat the samples at 95 $^{\circ}$ C for 10 min, and vortex for 5-10 sec. Then, centrifuge for 2 min at 13,000 rpm with a tabletop centrifuge (at RT).
- 7. Transfer an aliquot of the heated supernatant to a fresh tube. This supernatant will be used as the template in the PCR.
- 8. Prepare Detection Mix by dispensing components to each real-time PCR tube in the following manner

Components	Master Solution (per test)
2X qPCR Master Mix Solution	10 µl
Mycoplasma Detection Solution	5 μl
Total volume	15 ul

9. Fill up with the supernatant 5µl and Master Solution 15µl in the PCR tube.

* Under line means signal detection step

Note 1 : For Negative Control : 5µl DNase / RNase Free Water

Note 2 : For Positive Control : 5µl Positive Control

10. After centrifugation, put them into a real-time PCR system and process reaction.

Step	Cycle	Temp	Time
Pre-denaturation	1	95 °C	5' 30"
PCR and	40	95 °C	15"
Signal Detection	40	<u>58 °C</u>	<u>1'</u>

5 °C	15"	
<u>8 °C</u>	<u>1'</u>	

Channel setting Mycoplasma

IPC

FAM

HEX

PROTOCOL B: Using genomic DNA as a template

- 1. Add 5µl of purified genomic DNA as a template using the G-spin Total DNA Extraction Kit (Cat. No. 17046), and then resuspend after adding Master Solution 15µl in the PCR tube. Note: Appropriate amounts of DNA template sample: genomic DNA, 50 ng-100 ng
- 2. Follow protocol A from step 10.

Note: Recommend to perform one negative control reaction by adding 5µl of sterile water. We recommend to add 5µl of control DNA for positive control reaction.

DATA VALIDATION

1. When the reaction is finished, put a cut-off value according to the below table.

Set Manual baseline	Threshold	Ct Cutoff Value
3 ~15	Auto	Drop after 36 cycle

2. Valid Results: Ct value of control should be as below table

Items	FAM	HEX	Items	FAM	HEX
Positive Control	18 ~ 22	22 ~ 25	Negative Control	<36	<36

DATA INTERPRETATION

1. Expected Real-time RT-PCR Data

No.	Samples	Mycoplasma (FAM)	IPC (HEX)	Interpretation
1	Positive control	+	+	Valid
2	Negative control	-	+	Valid
3	Test 1	+	+	Positive
4	Test 2	+	-	Positive (High concentration of Mycoplasma DNA)
5	Test 3	-	+	Negative (Mycoplasma Free)
6	Positive Control	-	+	Retest
7	Negative Control	+	+	Contamination

EXPLANATION OF SYMBOLS

LOT Batch number RUO for research use only REF Product number 50 Sufficient for 50 tests Storage temperature limitation Manufacturing date Expire date

TROUBLESHOOTING GUIDE

Observation	Possible Cause	Recommendation
	Incorrect dye components chosen	Check dye component prior to data analysis
ΔRn ≤ No Template control ΔRn, and no	Reaction component omitted	Check that all the correct reagents were added
amplification plot	Degraded template or no template added	Repeat with fresh template
	Reaction inhibitor present	Repeat with purified template
ΔRn ≤ No Template control ΔRn, and both	Template contamination of reagents	Check technique and equipment to confine contamination. Use fresh reagents
reaction show an amplification plot		Repeat with aerosol barrier pipette tip after space cleaning
Amplification plot dips downwards	Ct Value less than 15, amplification signal detected too early	Reset the upper/lower value of baseline (two cycles lower than Ct Value). or repeat with diluted sample
Amplification plots is not within the log phase	PCR efficiency is poor	Re-optimization the reaction conditions
Ct value is higher than Less template added than expecte		Increase sample amount
expected	Sample is degraded	Evaluate sample integrity
	More template added than expected	Reduce sample amount
Ct value is lower than expected	Template contamination of reagents	Check technique and equipment to confine contamination. Use fresh reagents. Repeat with aerosol barrier pipette tip after space cleaning

Technical advice: +82-505-550-5600

Review date : 2015. 5. 6.

